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Figure 1. Given videos of a deformable category and a skeleton, we reconstruct an animatable 3D model that factorizes variations across

instances (e.g., cheetah’s and sphynx’s are both cats but with different shape morphology, skeleton dimensions, and texture) from

time-specific variations within an instance (e.g., skeleton articulations and elastic shape deformation). Left: Input videos; Middle-left: 3D

shape, skeleton, and skinning weights (visualized as surface colors) in the canonical space; Middle-right: Disentangled between-instance

and within-instance variations over time. Right: Morphology and motion transferred across the two instances.

Abstract

Building animatable 3D models is challenging due to the

need for 3D scans, laborious registration, and manual rig-

ging. Recently, differentiable rendering provides a pathway

to obtain high-quality 3D models from monocular videos,

but these are limited to rigid categories or single instances.

We present RAC, a method to build category-level 3D mod-

els from monocular videos, disentangling variations over

instances and motion over time. Three key ideas are intro-

duced to solve this problem: (1) specializing a category-

level skeleton to instances, (2) a method for latent space

regularization that encourages shared structure across a

category while maintaining instance details, and (3) us-

ing 3D background models to disentangle objects from the

background. We build 3D models for humans, cats and dogs

given monocular videos. Project page: https://gengshan-

y.github.io/rac-www/.

1. Introduction

We aim to build animatable 3D models for deformable

object categories. Prior work has done so for targeted cat-

egories such as people (e.g., SMPL [2, 32]) and quadruped

animals (e.g., SMAL [5]), but such methods appear chal-

lenging to scale due to the need of 3D supervision and reg-

istration. Recently, test-time optimization through differ-

entiable rendering [42, 43, 46, 60, 74] provides a pathway

to generate high-quality 3D models of deformable objects

and scenes from monocular videos. However, such models

are typically built independently for each object instance or

scene. In contrast, we would like to build category models

that can generate different instances along with deforma-

tions, given causally-captured video collections.

Though scalable, such data is challenging to leverage

in practice. One challenge is how to learn the morpho-

logical variation of instances within a category. For ex-

ample, huskys and corgis are both dogs, but have dif-

ferent body shapes, skeleton dimensions, and texture ap-

pearance. Such variations are difficult to disentangle from

the variations within a single instance, e.g., as a dog artic-

ulates, stretches its muscles, and even moves into differ-

ent illumination conditions. Approaches for disentangling

such factors require enormous efforts in capture and reg-

istration [2, 6], and doing so without explicit supervision

remains an open challenge.

Another challenge arises from the impoverished nature

of in-the-wild videos: objects are often partially observ-

able at a limited number of viewpoints, and input signals

such as segmentation masks can be inaccurate for such “in-

the-wild” data. When dealing with partial or impoverished

video inputs, one would want the model to listen to the com-

mon structures learned across a category – e.g., dogs have

two ears. On the other hand, one would want the model to

https://gengshan-y.github.io/rac-www/
https://gengshan-y.github.io/rac-www/
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Figure 2. Disentangling morphologies β and articulation θ. We show different morphologies (body shape and clothing) given the same

rest pose (top) and bouncing pose (bottom).

stay faithful to the input views.

Our approach addresses these challenges by exploiting

three insights: (1) We learn skeletons with constant bone

lengths within a video, allowing for better disentanglement

of between-instance morphology and within-instance artic-

ulation. (2) We regularize the unobserved body parts to be

coherent across instances while remaining faithful to the in-

put views with a novel code-swapping technique. (3) We

make use of a category-level background model that, while

not 3D accurate, produces far better segmentation masks.

We learn animatable 3D models of cats, dogs, and humans

which outperform prior art. Because our models regis-

ter different instances with a canonical skeleton, we also

demonstrate motion transfer across instances.

2. Related Works

Model-based 3D Reconstruction. A large body of work

in 3D human and animal reconstruction uses parametric

shape models [32, 44, 59, 65, 79, 80], which are built from

registered 3D scans of human or animals, and serve to

recover 3D shapes given a single image or video at test

time [3, 4, 4, 23, 23, 49, 78]. A recent research focus is to

combine statistical human body mode with implicit func-

tions [19, 27, 50–52, 68, 77] to improve the robustness and

fidelity of the reconstruction. Although parametric body

models achieve great success in reconstructing humans with

large amounts of ground-truth 3D data, it is unclear how to

apply the same methodology to categories with limited 3D

data, such as animals, and how to scale to real-life imagery

with diverse clothing and body poses. RAC builds category-

level shape models from in-the-wild videos and demon-

strates the potential to reconstruct 3D categories without so-

phisticated manual processing.

Category Reconstruction from Image Collections. A

number of recent methods build deformable 3D models

of object categories from images with weak 2D annota-

tions, such as keypoints and object silhouettes, obtained

from human annotators or predicted by off-the-shelf mod-

els [15, 20, 24, 30, 57, 63, 75]. However, those methods do

not distinguish between morphological variations and mo-

tion over time. Moreover, they often apply heavy regular-

ization on shape and deformation to avoid degenerate so-

lutions, which also smooths out fine-grained details. Re-

cent research combines neural implicit functions [35, 36]

with category modeling in the context of 3D data genera-

tion [7, 8, 39], where shape and appearance variations over

a category are modeled with conditional NeRFs. However,

reconstructions are typically focused on near-rigid objects

such as faces and vehicles.

Articulated Object Reconstruction from Videos. Com-

pared to image collections, videos provide signals to re-

construct object motions and disentangle them from mor-

phological variations. Some works [28, 41, 54] reconstruct

articulated bodies from videos, but they either assume syn-

chronized multi-view recordings or articulated 3D skeleton

inputs that make their approaches less general. Some other

works [72–74] learn animatable 3D models from monocu-

lar videos capturing the same object instance, without dis-

entangling morphology and motion. There are recent meth-

ods [29, 62, 73] using in-the-wild videos to reconstruct 3D

models animals, but their quality are relatively low.

3. Method

Given video recordings of different instances from a cat-

egory and a pre-defined skeleton, we build animatable 3D

models including instance-specific morphology (Sec. 3.1),

time-varying articulation and deformation (Sec. 3.2), as

well as a video-specific 3D background model (Sec. 3.3).

The models are optimized using differentiable rendering

(Sec. 3.4). An overview is shown in Fig. 3.

3.1. Between­Instance Variation

Fusing videos of different instances into a category

model requires handling the morphological variations,

which includes the changes in both internal skeleton and

outward appearance (shape and color). We define a video-
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Figure 3. Morphological variations vs time-varying articulation and deformation. (a) Canonical shape T, skinning weights W, and

joint locations J. (b) To represent morphological differences between instances, we use a morphology code β that specifies instance shape

and appearance Tβ , skinning weights Wβ for a canonical skeleton J. (c) β also predicts a change in bone lengths ∆Jβ which further

stretches instance shape into T
s

β by elongating body parts. (d) Time-varying articulations are modeled with an articulation vector θ by

linearly blending rigid bone transformations in the dual quaternion space. Time-varying deformations (such as muscle deformation) are

modeled with a deformation vector ωd through invertible 3D warping fields.

specific morphology code β to control the variations of both

the shape and the skeleton.

To model between-instance shape variations, one could

use dense warping fields to deform a canonical template into

instance-specific shapes [67]. However, warping fields can-

not explain topological changes (e.g., different clothing).

Instead, we define a hierarchical representation: a condi-

tional canonical field [9, 43, 61] to handle fine-grained vari-

ations over a category (e.g., the ears of dogs) and a stretch-

able bone model [16, 64] to represent coarse shape varia-

tions (e.g., height and size of body parts).

Conditional Field T. In the canonical space, a 3D point

X ∈ R
3 is associated with three properties: signed distance

d ∈ R, color c ∈ R
3, and canonical features ψ ∈ R

16,

which is used to register pixel observations to the canonical

space [37,73]. These properties are predicted by multi-layer

perceptron (MLP) networks:

(d, ct) = MLPSDF(X,β,ωa), (1)

ψ = MLPψ(X), (2)

where the shape and color are conditioned on a video-

specific morphology code β∈R32 [18, 39]. We further ask

the color to be dependent on an appearance code ωa∈R
64

that captures frame-specific appearance such as shadows

and illumination changes [34].

Skeleton J. Unlike shape and color, the bone structures are

not directly observable from imagery, making it ambiguous

to infer. Methods for automatic skeletal rigging [25, 40, 70]

either heavily rely on shape priors, or appear sensitive to

input data. Instead, we provide a category-level skeleton

topology, which has a fixed tree topology with (B+1) bones

and B joints (B=25 for quadruped and B=18 for human).

To model cross-instance morphological changes, we define

per-instance joint locations as:

J = MLPJ(β) ∈ R
3×B . (3)

As we will discuss next, the change in joint locations not

only stretches the skeleton, but also results in the elongation

of canonical shapes as shown in Fig. 3 (c). The skeleton

topology is fixed through optimization but J is specialized

to each video.

Skinning Field W. For a given 3D location X, we define

skinning weight vector W ∈ R
B+1 following BANMo:

W = σsoftmax

(

dσ(X,β,θ) +MLPW(X,β,θ)
)

, (4)

where θ is a articulation code and dσ(X,β,θ) is the Ma-

halanobis distance between X and Gaussian bones under

articulation θ and morphology β, refined by a delta skin-

ning MLP. Each Gaussian bone has three parameters for

center, orientation, and scale respectively, where the cen-

ters are computed as the midpoint of two adjacent joints,

the orientations are determined by the parent joints, and the

scales are optimized.

Stretchable Bone Deformation. To represent variations of

body dimension and part size, prior work [32, 80] learns a

PCA basis from registered 3D scans. Since 3D registrations

are not available for in-the-wild videos, we optimize a para-

metric model through differentiable rendering. Given the

stretched joint locations, the model deforms the canonical

shape Tβ with blend skinning equations,

Ts
β =

(

WβGβ

)

Tβ, (5)

where Gβ transforms the bone coordinates, and Wβ is the

instance-specific skinning weights in Eq. (4).

3.2. Within­Instance Variation

We represent within-instance variations as time-varying

warp fields between the canonical space and posed space at

time t. Similar to HumanNeRF [61], we decompose mo-

tion as articulations that explains the near-rigid component

(e.g., skeletal motion) and deformation that explains the

remaining nonrigid movements (e.g., cloth deformation).

Note given the complexity of body movements, it is almost

certain the pre-defined skeleton would ignore certain mov-

able body parts. Adding deformation is crucial to achieving

high-fidelity reconstruction.



Figure 4. Different β morphologies of dogs (top) and cats (bottom). Our reconstructions show variance in ear shape and limb size over

dog breeds, as well as variance in limb and body size over cat breeds.

Time-varying Articulation. To model the time-varying

skeletal movements, we define per-frame joint angles:

Q = MLPA(θ) ∈ R
3×B (6)

where θ ∈ R
16 is a low-dimensional articulation parameter,

and each joint has three degrees of freedom. Given joint

angles and the per-video joint locations, we compute bone

transformations G ∈ R
3×4×B via forward kinematics. We

apply dual quaternion blend skinning (DQB) [21] to get the

warping field for each spatial point,

D(β, θ) = (WβG)Ts
β. (7)

Dual quaternion skinning blends SE(3) transformations in

dual quaternion space and ensures valid SE(3) after blend-

ing, which reduces artifacts around twisted body parts. Note

stretching in Eq. (5) can be fused with articulation as a sin-

gle blend skinning operation.

Time-varying Soft Deformation. To further explain the

dynamics induced by non-skeleton movements (such as the

cat belly and human clothes), we add a neural deformation

field [26, 42] D(·) that is flexible enough to model highly

nonrigid deformation. Applying the fine-grained warping

after blend skinning, we have

D(β, θ, ωd) = D(D(β, θ), ωd), (8)

where ωd is a frame-specific deformation code. Inspired

by CaDeX [26], we use real-NVP [10] to ensure the 3D

deformation fields are invertible by construction.

Invertibility of 3D Warping Fields. For a given time in-

stance t, we have defined a forward warping field Wt,→

that transforms 3D points from the canonical space to the

specified time instance, and a backward warping field Wt,←

to transform points in the inverse direction. Both warping

fields include stretching (Eq. (5)), articulation. (Eq. (7)),

and deformation (Eq. (8)) operations. Notably, we only

need to define each operation in the forward warping fields.

The deformation operation is, by construction, invertible.

To invert stretching and articulation, we invert SE (3) trans-

formations G in the blend skinning equations and compute

the skinning weights with Eq. (4) using the corresponding

morphology and articulation codes. A 3D cycle loss is used

to ensure that the warping fields are self-consistent after a

forward-backward cycle [31, 74].

3.3. Scene Model

Reconstructing objects from in-the-wild video footage

is challenging due to failures in segmentation, which is

often caused by out-of-frame body parts, occlusions, and

challenging lighting. Inspired by background subtrac-

tion [17, 53], we build a model of the background to ro-

bustify our method against inaccurate object segmentation.

In background subtraction, moving objects can be seg-

mented by comparing input images to a background model

(e.g., a median image). We generalize this idea to model

the background scene in 3D as a per-video NeRF, which can

be rendered as color pixels at a moving camera frame and

compared to the input frame. We design a conditional back-

ground model that generates density and color of a scene

conditioned on a per-video background code γ:

(σ, ct) = MLPbg(X,v,γ), (9)

where v is the viewing direction. To render images, we

compose the density and color of the object field and the

background NeRF in the view space [39], and compute the

expected color and optical flow. Background modeling and

composite rendering allows us to remove the object silhou-

ette loss, and improves the quality of results. Interestingly,

we find that even coarse geometric reconstructions of the

background still can improve the rendered 2D object sil-

houette, which in turn is useful for improving the quality of

object reconstructions (Fig. 5). We ablate the design choice

in Tab. 1.

3.4. Losses and Regularization

Given the videos and a predefined skeleton, we optimize

the parameters discussed above: (1) canonical parameters

{β,J,T,W} including per-video morphology codes and

canonical templates; (2) motion parameters {θ,ωd,A,D}
including per-frame codes as well as articulation and soft

deformation MLPs. (3) background parameters {γ,B} in-

cluding video background codes and a background NeRF.

The overall objective function contains a image reconstruc-

tion loss term and regularization terms.

Reconstruction Losses. The reconstruction loss is defined

as the difference between rendered and observed images,
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Figure 5. Joint foreground and background reconstruction. We

jointly reconstruct objects and their background, while refining the

segmentation. Note the input silhouette is noisy (e.g., tail was not

segmented), and background modeling helps produce an accurate

refined silhouette. As a result, RAC is robust to inaccurate seg-

mentation (e.g., tail movements marked by the red box).

including object silhouette, color, flow, and features:

L = Lsil + Lrgb + LOF + Lfeat. (10)

We update the model parameter by minimizing L through

differentiable volume rendering in the same way as

BANMo [74]. Off-the-shelf estimates of object silhouettes

are used as supervision to kick-start the optimization. Then

the weight of silhouette term is set to 0 after several iter-

ations of optimization, while composite rendering of fore-

ground and background itself is capable of separating the

object and the non-object components.

Morphology Code (β) Regularization. Existing differen-

tiable rendering methods are able to faithfully reconstruct

the input view but not able to hallucinate a reasonable so-

lution for occluded body parts [42, 74]. See Fig. 9 for an

example. One solution is to regularize the instance-specific

morphology code β to be consistent with the body shapes

observed in other videos. Traditional approaches might do

this by adding variational noise (as in a VAE) or adversar-

ial losses (as in a GAN). We found good results with the

following easy-to-implement approach: we randomly swap

the morphology code β of two videos during optimization;

this regularizes the model to effectively learn a single mor-

phology code that works well across all videos. But naively

applying this approach would produce a single morphology

that would not specialize to each object instance. To en-

able specialization, we gradually decrease the probability

Table 1. Quantitative results on AMA sequences. 3D Chamfer

distance (cm, ↓) and F-score (%, ↑) averaged over all frames. Our

model is trained on 47 human videos spanning existing human

datasets (as described in Sec.4.2); we also train BANMo on the

same set. Other baselines are trained on 3D human data and re-

lies on SMPL model. Results with S indicates variants trained on

single instances. Our model outperforms prior works.

Method
samba bouncing

CD F@2% F@5% CD F@2% F@5

HuMoR 9.8 47.5 83.7 11.5 45.2 82.3

ICON 10.1 39.9 85.2 9.7 53.5 86.4

BANMoS 8.0 62.2 89.1 7.6 64.7 91.1

BANMo 9.3 54.4 85.5 10.2 54.4 86.5

RACS 6.4 70.9 93.2 6.9 66.7 92.8

RAC 6.0 72.5 94.4 8.0 63.8 91.4

w/o skeleton 8.6 59.6 87.7 9.3 59.5 87.8

w/o β 8.5 58.9 87.5 8.4 62.5 90.6

β swap→ ||β||22 6.5 69.0 93.8 8.0 64.8 91.3

+ bkgd NeRF 6.3 70.9 93.7 7.4 65.5 91.8

of swaps during the optimization, from P = 1.0 → 0.05.

Joint J Regularization. Due to the non-observable nature

of the the joint locations, there might exist multiple joint

configurations leading to similar reconstruction error. To

register the skeleton with the canonical shape, we minimize

Sinkhorn divergence [12] between the canonical surface Tβ
and the joint locations Jβ, which forces them to occupy the

same space. We extract the canonical mesh with marching

cubes [33] as a proxy of the canonical surface. Sinkhorn

distance interpolates between Wasserstein and kernel dis-

tances and defines a soft way to measure the distance be-

tween shapes with different density distributions.

Soft Deformation Regularization The soft deformation

field has the capacity of explaining not only the soft de-

formations, but also the skeleton articulations. Therefore,

we penalize the L2 norm of the soft deformation vectors at

randomly sampled morphology and articulations,

Lsoft = ∥D(β, θ, ωd)−D(β, θ)∥ . (11)

4. Experiments

Implementation Details. We build RAC on BANMo and

compute bone transformations from a kinematic tree. The

soft deformation field follows CaDeX, where we find that

two invertible blocks are capable of handling moderate de-

formations. To evaluate surface reconstruction accuracy, we

extract the canonical mesh T by finding the zero-level set of

SDF with marching cubes on a 2563 grid. To get the shape

at a specific time, the canonical mesh is forward-warped

with Wt,→.

Optimization Details We use AdamW to optimize the

model for 36k iterations with 16384 rays per batch (taking
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Figure 6. Qualitative comparison. We compare with BANMo and model-based methods (HuMoR, ICON, BARC). Top: human recon-

struction on (AMA). Bottom: dogs and cats reconstruction on internet videos.

around 24 hours on 8 RTX-3090 GPUs). We fist pre-train

the background model with RGB, optical flow, and sur-

face normal losses while ignoring foreground pixels. Then

we combine background models with the object model for

composite rendering optimization. The weights for the loss

terms are tuned to have similar initial magnitude. The object

root poses are initialized with single-image viewpoint net-

works trained for humans and quadruped animals following

BANMo [74]. For all categories, we start with the same

shape (a unit sphere) and a known skeleton topology. Both

the shape and the joint locations are specialized to the input

dataset, as shown in Fig. 7.

4.1. Reconstructing Humans

Dataset. We combine existing human datasets, including

AMA, MonoPerfCap, DAVIS, and BANMo to get 47 hu-

man videos with 6,382 images [45, 58, 69]. AMA con-

tains multi-view videos, but we treat them as monocular

videos and do not use the time-synchronization or camera

extrinsics. During preprocessing, we use PointRend [22]

to extract object segmentation, CSE [38] for pixel features,

VCN-robust [71] for optical flow, and omnidata [11] for sur-

face normal estimation.

Metrics. We use AMA for evaluation since it contains

ground-truth meshes and follow BANMo to compute both

Chamfer distances and F-scores. Chamfer distance com-

putes the average distance between the ground-truth and

the estimated surface points by finding the nearest-neighbor

Initial Shape and Skeleton Final Shape and Skeleton (mean morphology)

Figure 7. Shape and skeleton optimization. From top to bottom,

we visualize the canonical shape and skeleton of our dog, cat, and

human models. Left: Canonical shape and skeleton before opti-

mization. Right: Canonical shape and skeleton after optimization.

matches, but it is sensitive to outliers. F-score at distance

thresholds d ∈ {1%, 2%, 5%} of the human bounding box

size [56] provides a more informative quantification of sur-

face reconstruction error at different granularity. To account

for the unknown scale, we align the predicted mesh with the

ground-truth mesh using their depth in the view space.

Baselines. On AMA, we compare with template-free

BANMo [74] and model-based methods, including Hu-



MoR [48] and ICON [68]. BANMo reconstructs an animat-

able 3D model from multiple monocular videos of the same

instance, powered by differentiable rendering optimization.

We optimize BANMo on the same dataset with the same

amount of computation and iterations as ours. HuMoR is

a temporal pose and shape predictor for humans. It per-

forms test-time optimization on video sequences leverag-

ing OpenPose keypoint detection and motion priors trained

on large-scale human motion capture dataset. We run it on

each video sequence, and processing 170 video frames takes

around two hours on a machine with Titan-X GPU. ICON is

the recent SOTA method on single view human reconstruc-

tion. It combines statistical human body models (SMPL)

with implicit functions and is trained on 3D human scans

with clothing. Notably, it performs test-time optimization

to fit surface normal predictions to improve the pose accu-

racy and reconstruction fidelity. We run it per frame, and

processing a 170 frame video takes around three hours on

an RTX-3090 GPU.

Results. We show qualitative comparison with baselines

in Fig. 6 top row, and quantitative results in Tab. 1. On

the handstand sequence, HuMoR works well for common

poses but fails where the performer is not in an upright pose.

ICON works generally well, but the hand distances appear

not physically plausible (too short) from a novel viewpoint.

BANMo reconstruction also failed to reconstruct the un-

natural upside-down pose. In contrast, RAC successfully

reconstructs the handstand pose with plausible hand dis-

tances. On the samba sequence, HuMoR correctly predicts

body poses, but fails to reconstruct the cloth and its defor-

mation. ICON predicts a broken dress and distorted human

looks from a novel viewpoint, possibly due to lack of di-

verse training data from dressed humans. When applied to

47 videos of different humans, BANMo fails to model the

cloth correctly, possibly because a limited number of con-

trol points are not expressive enough to model the morpho-

logical variations over humans wearing different clothes.

RAC models between-shape variations using a conditional

canonical model and successfully reconstructs cloth defor-

mation using the soft deformation field.

Our quantitative results align with qualitative observa-

tions, where RAC outperforms all baselines except being

slightly worse than BANMo trained on single instances (S).

However, RAC trained on single instances (S) or multiple

instances (M) outperforms BANMo trained in either fash-

ion. In particular, BANMo results are notably worse when

trained on multiple instances, indicating the difficulty in

building category models. In contrast, RAC become better

when trained on multiple instances.

4.2. Reconstructing Cats and Dogs

Dataset. We collect 76 cat videos and 85 dog videos from

Internet videos, as well as public data from BANMo. All

the videos are casually-captured monocular videos. We ex-

tract video frames at 10 FPS, including 9,734 frames for

cats and 11,657 frames for dogs. We perform the same pre-

processing as human reconstruction.

Baselines. We compare with BANMo and model-based

BARC [49]. BARC is the current SOTA for dog shape and

pose estimation. It trains a feed-forward network using CG

dog models and images with keypoint labels. The shape

model is based on SMAL, which uses manual rigging and

registration to fit 3D animal toys. We run BARC on indi-

vidual images.

Results. We show qualitative results in Fig. 6 bottom row.

For dog videos, we find that BARC worked well to predict

coarse shapes and poses. However, the results are biased

towards certain dog breeds. For instance, BARC predicts

a long jaw when the dog has a short jaw (top row), and

predicts round ears when the dog has sharp ears (bottom).

BANMo was able to reconstruct a reasonable coarse shape,

but failed to capture the fine details (e.g., the shape of the

ear and the size of the head) with only 25 control points.

In contrast, RAC was able to faithfully capture the coarse

shape and fine details of the dogs. Unlike dogs, cats have

fewer variations in body shape and size, where we find that

BANMo works well in most cases. However, for the body

parts not visible from the reference viewpoint, BANMo of-

ten estimates a squashed shape, which may be caused by

the entangled morphology and articulations. In contrast,

RAC accurately infers reasonable body parts and articula-

tions even when they are not visible.

4.3. Diagnostics

Large Morphological Changes. We reconstruct eight

videos of different quadruped animals together to “stress

test” our method. The dataset contains two dog videos, two

cat videos, and one video for goat, bear, camel, and cow,

respectively. The result is shown in Fig. 8.

P=0.01

P=0.05

Figure 8. Quadruped Category Reconstruction. Using a smaller

code swapping probability P = 0.01 results in more faithful

instance shape, but less smooth results. A larger P produces

smoother results, but some instance-specific features disappear.

Morphology Code β Removing morphology code β from

the canonical field degrades it to a standard NeRF. We rerun

the experiments and the results are shown in Tab. 1 as well

as Fig. 9. Without the morphology code, our reconstruc-

tions are forced to share the same canonical shape, which



as discussed in Sec 3.1, failed to handle fine deformations

and topological changes (e.g., clothing), leading to worse

results in all metrics.

Morphology Code Regularization To test the effective-

ness of the morphology code regularization, we set P = 0
throughout the optimization. The results are shown in Tab. 1

and Fig. 9. Without regularization of the morphology code,

the reconstructed shape may appear reasonable from the ref-

erence viewpoint, but severely distorted from a novel view-

point. We posit the body parts that are not well-covered in

the video are inherently difficult to infer. As a result, the

shapes become degenerate without relying on priors from

other videos in the dataset. Tab. 1 also shows that code

swapping outperforms norm regularization [14] (||β||22).

We posit norm regularization forces codes to be similar, but

does not constrain their output space, while code swapping

encourages any code to explain any image in the data. In

practice, we find that code swapping generates valid out-

puts when we interpolate between codes.

w/o    code w/o     regularizationFull Model β βReference

Figure 9. Ablation study on morphology modeling.

Soft Deformation. After removing the soft deformation

field, RAC fails to recover body parts that are not controlled

by the skeleton (Fig. 10), such as the ears of the dog.

w/oFull Model ω
dReference Skeleton Visualization

Figure 10. Ablation study on soft deformation ωd.

Motion Transfer. Given the category model with disentan-

gled morphology and articulations, we can easily transfer

an articulation in frame t to other video by setting the ar-

ticulation parameter to θt, while keeping the morphology

parameter β the same. We show motion transfer across hu-

man in Fig. 2. Please visit our website for video results of

dogs, cats, and humans.

Skeleton vs Control Points. Control point deformations

are flexible but do not preserve body dimensions (e.g., a line

segment can be stretched longer by its end points). As a re-

sult, body and limb dimensions can change, creating two

problems: (1) articulated shapes look squashy from novel

views, and (2) variations in body dimensions are entangled

with control-point deformations. In contrast, skeleton de-

formation preserves body dimensions. It produces better

results (Tab. 1) and better motion re-targeting (Fig. 11).

Motion source TransferredMotion source Transferred

RAC w/ control pointsRAC w/ skeleton

F
ra
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e 
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ra
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Figure 11. Skeleton vs control-points for motion transfer. RAC

with control points fails to maintain the body dimensions during

motion, and produces squashy results when transferred to a new

morphology. RAC with skeleton disentangles motion from mor-

phology, allowing for better motion transfer.

Stretchable Bones allow for control of bone dimensions

after optimization. We show an example of a Dachshund

(Source1) warped to a Heeler (Source2) by modifying bone

dimensions while keeping the shape unchanged.

β1

bone + β1

template β2

bone + β2

template

β2

bone + β1

template

β1

bone + β2

template

Articulation source Source 1 Source 2

Figure 12. Disentanglement of bone dimensions and shape.

5. Discussion

We have presented a scalable way of building animat-

able category models by learning from monocular videos. It

disentangles morphology variations between instances and

motion within an instance, allowing motion transfer over a

category. RAC reaches state-of-the-art reconstruction qual-

ity for cats, dogs, and humans in terms of mid-level recon-

struction, but details are still missing (such as human hand

and toes). Similar to BANMo, RAC requires rough view-

point initialization. Although we have shown either a pre-

trained viewpoint estimator or roughly annotated camera

viewpoints (in the supplement) are sufficient, it would be

interesting to study a more generic way to initialize view-

points. We also show that category-level skeleton improves

motion reconstruction, and leave jointly inferring skeleton

structure together with object shape for future work.
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A. Additional Details

Shape Regularization. We apply eikonal regularization to

force the norm of the first order derivative of signed dis-

tances d to be close to 1,

Leikonal = (∥∇MLPSDF(X)∥ − 1)2. (12)

Eikonal loss forces the reconstruction to be a valid surface

and empirically improves the surface reconstruction quality.

Pose, Deformation, and Appearance Smoothness. We

would like the time-varying articulated pose, deformation,

and appearance codes {θ, ωd, ωa} to vary smoothly within a

video. To accomplish this, we make use of time-dependent

positional embeddings (similar to [74]):

ωb
t = AiF(t) (13)

where F(·) is a 1D basis of sines and cosines with linearly-

increasing frequencies at log-scale [55], and we learn sepa-

rate weight matrices Ai∈{1...,M} for each video.

B. Category Outside DensePose

We test RAC in a scenario where there is no predefined

DensePose features and skeleton.

Figure 13. Vehicle Category Reconstruction. Our method is able

to fuse videos of 365 vehicles with different appearance and shape

into a category model. From left to right, we show reconstruction

of sedans, SUVs, and vans.

Vehicle Dataset. We employ images from multiple 4K

cameras [47] that overlook urban public spaces to analyze

the flow of traffic vehicles. The data are captured for 3-

second bursts every few minutes, and only images with no-

table changes are stored. We extracted 365 car videos from

the dataset to build the category model. The dataset con-

tains wide variation in vehicle categories like pickup trucks,

construction vehicles etc on which traditional model based

approached perform poorly.

Camera Pose Initialization. As there is no DensePose

model for cars, we took a two-stage approach to first

coarsely register a few car videos with manual viewpoint

annotation and then train a single-image viewpoint network

to predict viewpoints for the rest of the videos. The cam-

era viewpoints are roughly annotated for each frame (with

Table 2. Quantitative results on Pablo sequence. 3D Chamfer

distance (cm, ↓) is computed on the clothing region and averaged

over all frames. MPCap uses a pre-scanned personalized template.

Method MPCap* MCCap PiFuHD T2S RAC

Chamfer 14.6 17.9 26.5 27.7 18.3

around 30 degree rotation error). Annotation for a 100

frame video takes around 30 seconds. We found annotat-

ing 20 cars to be sufficient to train a viewpoint estimator

that generalizes to other cars.

Results. We show the reconstruction results of car videos

in Fig. 13. Please visit the website for more results.

C. Evaluation on Pablo Sequence

We compare with baselines on the Pablo sequence,

which is part of the public MonoPerfCap [69] dataset. Our

method optimizes the Pablo sequence together with the

rest of our 47 human videos. After differentiable rendering

optimization, we extract meshes for the Pablo sequence

and compare with the 3D ground-truth for evaluation.

Metrics. We follow the evaluation protocol of MonoCloth-

Cap [66] and compute the average point-to-surface dis-

tances in the clothing region. The clothing region (the T-

shirt and shorts) is obtained by manual segmentation on the

ground-truth surface mesh.

Results. We show quantitative comparisons in Tab. 2 and

refer the reader to the qualitative results in Fig. 8 of the main

draft. Our method outperforms PiFuHD [51], Tex2Shape

(T2S) [1], both of which are single-view human shape pre-

dictors trained on 3D scans of humans. Our method does

not use 3D data to train but performs test-time optimiza-

tion on 47 human videos. Our method is slightly worse

than MonoClothCap (MCCap) [66] that uses a parametric

human body model (SMPL), and worse than MonoPerfCap

(MPCap), which uses a prescanned template. Both para-

metric body model and personalized shape template pro-

vides a strong shape prior, while our method does not rely

on any shape prior.

D. Difference from prior works

We highlight the difference from previous work in Tab. 3.

In terms of shape modeling, HyperNeRF [43] and Human-

NeRF [61] reconstruct a single scene or instance, while

RAC learns a space of category shapes. For skeleton

modeling, CASA [64] is optimized per-instance, while

RAC learns a shared space over a category of skeletons

(with different bone lengths). For background modeling,

NeRF++ [76] assumes a static scene and does not use

background to help object segmentation and reconstruction.



NerFace [13] treats background as a static image, while we

represent the background as a NeRF, which generalizes to

videos captured by a moving camera.

Table 3. Difference between prior works and RAC.

Method Shape Motion Background 3D Data/Pose

NeRF++ N.A. N.A. NeRF No

NeRFace Instance Conditional Image No

HyperNeRF Instance Fields+Conditional N.A. No

BANMo Instance Control Points N.A. No

CASA Instance Instance Skeleton N.A. Yes

HumanNeRF Instance Instance Skeleton N.A. Yes

RAC Category Category Skeleton NeRF No
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