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Figure 1: Given casually-captured monocular videos (left), PPR builds 3D models of articulated objects and the surrounding environment.
Naive kinematic reconstruction (middle) generates a family of solutions, some containing inconsistent physical support and contact dy-
namics (blue and green color), such as floating or walking with sliding feet. We show that differentiable physics simulation acts as effective
regularizer for improving the physical plausibility of visual reconstruction algorithms. As PPR reconstructs the dynamics scene, it also
drives a ragdoll in a physics simulator to track the kinematic reconstruction. This ensures the reconstructions are statically stable with
ground contact (right), and the center of mass is projected within the support polygon (marked with red). PPR also reports physics estima-
tions, such as ground reaction forces (red arrows) and center of mass (green arrow).

Abstract

Given monocular videos, we build 3D models of artic-
ulated objects and environments whose 3D configurations
satisfy dynamics and contact constraints. At its core, our
method leverages differentiable physics simulation to aid
visual reconstructions. We couple differentiable physics
simulation with differentiable rendering via coordinate de-
scent, which enables end-to-end optimization of, not only
3D reconstructions, but also physical system parameters
from videos. We demonstrate the effectiveness of physics-
informed reconstruction on monocular videos of quadruped
animals and humans. It reduces reconstruction artifacts
(e.g., scale ambiguity, unbalanced poses, and foot swap-
ping) that are challenging to address by visual cues alone,
and produces better foot contact estimation.

1. Introduction

Given casually-captured monocular RGB videos, we aim
to build 3D models of articulated objects and the environ-
ment, whose configurations (geometry, motion trajectory,
force, and mass distribution) satisfy physics constraints, and
can be replayed in a physics simulator.

Reconstructing dynamic 3D structures from monocu-
lar videos is challenging due to the under-constrained na-
ture of the problem. Prior works often leverage first order
constraints. For instance, Nonrigid-SfM explores temporal
smoothness and low-rank priors [4] to constrain the prob-
lem. Recent works on differentiable rendering and dynamic
NeRF utilize divergence-free motion fields [45] or as-rigid-
as-possible priors [22]. Although those methods are able
to obtain visually appealing reconstruction results from the
reference viewpoint, physically-implausible configurations,
such as foot sliding, statically-unstable poses, etc., are often
observed from a novel viewpoint. An illustrative example
is shown in Fig. 2.

Physics as a prior. We seek a more principled way to model
the time-varying behavior of an object and its interaction
with the environment using physics constraints. Physical
priors tend to be relatively unexplored as a tool for aiding
reconstruction, though important exceptions exist in the do-
main of monocular human motion capture [9, 55, 60]. One
reason that such methods are not more widespread is that
they often make strong assumptions about the target and
the scene, for instance, accurate 2D/3D keypoint tracking,
known ground plane, and contact state annotations. More-
over, operationalizing such constraints requires the use of
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Figure 2: Physics helps monocular reconstruction. Naive re-
constructions of dynamic scenes from monocular videos are of-
ten physically implausible. (a) Although the 2D projections of
both the red and blue reconstructions align with the input frame
(top), their scales and 3D motions are widely different due to the
inherent ambiguity between camera and object motion. Solution
1 (red) correctly touches the ground while solution 2 (blue) ap-
pears smaller than its true size and floats in the air. (b) Tracking
is challenging when the feet of the cat are occluded during walk-
ing (top). PPR tracks dense surface points leveraging rigid body
dynamics constraints. As a result, the left-rear feet and tail of the
cat are correctly tracked in the world coordinate despite undergo-
ing heavy self-occlusion (bottom). The contact constraints also
effectively reduce infeasible motion such as foot skating. (c) The
kinematic solution does not often produce feet trajectories making
contact with the ground (black horizontal line). Applying ground-
fitting (to satisfy joints being above the ground) still produces a
human that is floating and titled. PPR jointly optimizes scale, re-
constructions, and physics to produce an upright human in contact
with the ground.

heavyweight simulators that may be difficult to integrate
with visual reconstruction algorithms.

In this work, we couple differentiable rendering with dif-
ferentiable physics-based simulation to jointly solve for the
object geometry, motion, background scene, and physics
parameters including body mass distributions and control
parameters. We posit that just as differentiable renderers
have lowered the barrier of entry for (neural) 3D model-
ing, differentiable simulators are also lowering the barrier
for incorporating physical constraints. Compared to prior
approaches that rely on strong human priors to estimate
3D pose and ground contact, PPR works for more uncon-
strained settings including both humans and animals in an
unknown environment, enabled by end-to-end optimization
from videos to physics.

Specifically, we (1) introduce an end-to-end framework
for reconstructing physically-plausible dynamic objects and
scene configurations from monocular videos; (2) propose an
alternating-direction 3D-reconstruction formulation by cou-
pling differentiable physics simulation and differentiable
rendering; (3) demonstrate improved reconstruction quality
on examples including humans and animal videos. To our
knowledge, PPR is the first attempt at a generalized, end-
to-end framework for jointly optimizing dynamic 3D recon-
structions and physical systems from monocular videos.

2. Related Work
Parametric Body Models. A large body of work in
human and animal reconstruction uses parametric mod-
els [33, 46, 67, 72, 87, 88], which are built from reg-
istered 3D scans of human or animals, and serve to re-
cover 3D shapes given a single image or video at test time
[1, 2, 24, 86]. Although parametric body models achieve
great success in reconstructing human with large amounts
of ground-truth 3D data, it is challenging to apply the same
methodology to categories with limited 3D data, such as an-
imals.
Nonrigid Reconstruction from Imagery. Non-rigid struc-
ture from motion (NRSfM) methods [3, 13, 26, 27, 61] re-
construct non-rigid 3D shapes from 2D point trajectories in
a class-agnostic way. However, due to difficulties in esti-
mating long-range correspondences [58, 63], they do not
work well for videos in the wild. Recent works apply dif-
ferentiable rendering to reconstruct articulated objects from
videos [50, 71, 77, 78, 79] or images [12, 22, 25, 29, 30,
71, 82]. However, their recovered 3D configurations are of-
ten physically implausible due to the ill-posed nature of the
monocular reconstruction problem.
Physics-informed 3D Reconstruction. Prior work im-
proves the physical realism of human motion reconstruc-
tion by either differentiable physics simulation [9] or soft
physics constraints [55, 60, 67]. Their methods often
require a human template that encapsulates prior knowl-
edge of human body shape, mass, and skeletons (e.g.,
GHUM [73], SMPL [33]). The dependence on the 3D tem-
plates and pose priors made them difficult to generalize to
non-human categories. Most of them also require ground
plane and foot contact annotations [59, 60]. Recently, Diff-
Phy [9] optimizes control parameters that generate the mo-
tion through a physics simulator that removes the depen-
dency on contact annotations; however, it still relies on the
3D human pose and assumes a fixed camera frame. Beyond
the human category, some recent works [21, 39] explore
more generic physics to regularize shape and cloth defor-
mation.
Differentiable Simulation with Contact. Differentiable
contact reasoning in graphics and robotics has seen great
advancement in recent years [16, 18, 37, 70, 85]. A cru-
cial challenge for contact simulation and gradient com-
putation arises from its non-smoothness nature. Some
methods solve a set of complementarity problems govern-
ing contact forces via optimization and derive the gradi-
ents [16, 17, 52, 62, 70]. An alternative approach is to
soften contact forces by allowing inter-penetration that pro-
duces elastic forces to push collided objects away [8, 37].
We leverage the soft contact model that can be easily paral-
lelized on GPUs, and couple differentiable contact physics
with differentiable rendering to jointly reason about 3D re-
construction and physics from videos.
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Figure 3: Method overview. Given monocular videos of an articulated object, PPR solves for a physically plausible representation of
the object and the surrounding environment. (a) It leverages differentiable volume rendering to optimize the object and the background
geometry (Sec. 3.1), as well as the object and camera motion parameters (Sec. 3.2). (b) It leverages a differentiable physics simulator to
recover the underlying parameters of an articulated body system, including mass distribution, parameters of a controller, and the target
motion tracked by the controller (Sec. 3.3). (c) We alternate between the differentiable rendering optimization and differentiable physics
optimization, such that the reconstructions are consistent with visual observations while satisfying physics constraints (Sec. 3.4).

3. Approach
Given casually-taken videos of an articulated object, we

apply differentiable rendering (DR) to solve for a kinematic
reconstruction of the object and the surrounding environ-
ment that faithfully explains the input videos (Sec. 3.1 and
Sec. 3.2). Meanwhile, we perform differentiable physics
(DP) optimization to constrain the kinematic estimation to
be physically plausible, such that it can be replayed in a
simulator (Sec. 3.3). We alternate between DR and DP
using coordinate descent until the optimization converges
(Sec. 3.4). An overview is shown in Fig 3.

3.1. Object and Scene Model

To enable physics-based modeling of the interactions be-
tween the object and the environment from videos, we build
a dense 3D representation of their kinematic states. We
model the scene T as the composition of a dynamic ob-
ject and a rigid background, each of which is represented as
neural fields defined in their respective canonical space.
Object Fields To. Our canonical model for the object is
similar to BANMo [79]. A 3D point X ∈ R3 is associated
with three properties: signed distance d ∈ R, color c ∈ R3,
and canonical features ψ ∈ R16, which are used to register
pixel observations to the canonical space. These properties
are predicted by multi-layer perceptron (MLP) networks:

(d, ct) = MLPσ(X,ωa), (1)
ψ = MLPψ(X). (2)

Besides the 3D point locations, we further condition the
color on an appearance code ωa∈R64 that captures frame-
specific appearance such as shadows and illumination
changes [38]. To capture articulations and soft deforma-
tions, we use a deformable variant of NeRF [79]. For a
given time t, it defines a forward warping field Wt,→ that
transforms 3D points from the canonical space to the spec-
ified time instance, and a backward warping field Wt,← to
transform points in the inverse direction. The warping fields
are further explained in Sec. 3.2.

Scene Fields Ts. We leverage VolSDF [80] to build a high-
quality background reconstruction. One crucial modifica-
tion is that we supervise the background fields with not
only RGB, but also optical flow and surface normal esti-
mations. Optical flow supervision acts similarly to direct
bundle adjustment in DroidSLAM [66], which effectively
optimizes camera parameters and scene geometries in chal-
lenging conditions (e.g., low-texture, large camera motion).
Surface normal supervision [68, 83] provides a signal to
regularize geometry and reconstruct the background when
there is little to no motion parallax. Those supervisions are
extracted from pre-trained optical flow [65, 76] and surface
normal [6] predictors.
Composite Rendering. To render images, we compose the
density and color of the object and the scene fields in the
view space [44], and compute the expected color, optical
flow and surface normal maps. During optimization, we
minimize the difference between the rendered and observed
color, flow, and surface normal values.

3.2. Motion Representation

The warping function W models object motion is mod-
eled at three levels: root body movements Go, skeleton ar-
ticulations A = {J,W,Q} and soft deformations S.
Global Movement {Gb,Go}. We model the background-
to-camera transformations Gb and object root-to-camera
transformations Go as per-frame SE(3) represented as
Fourier-based MLP networks.
Skeleton Articulation {J,Q,W}. The coarse-level mo-
tion of the object is controlled by an articulated skeleton
model. The skeleton has bones connected by 3-DoF spher-
ical joints, specifically a tree topology with joint locations
J ∈ R3×(B−1) and Gaussian bones of size L ∈ R9×B . We
set B=26 for quadrupeds and B=19 for humans. The skele-
ton topology is fixed through optimization but J and L are
specialized to input videos. To model time-varying skeletal
movements, we define per-frame joint angles:

Q = MLPA(θ) ∈ R3×(B−1), (3)



where θ ∈ R16 is a low-dimensional articulation code.
Given joint angles and the per-video joint locations, we
compute bone transformations G ∈ R3×4×B in the object
root coordinate via forward kinematics [42].

To drive the space deformation with bone articulations,
we follow prior work [79] to define the skinning weights
corresponding to a 3D point X as,

W = σsoftmax

(
dσ(X,θ) +MLPW(X,θ)

)
∈ RB , (4)

where θ is a pose code and dσ(X,θ) is the Mahalanobis
distance between X and Gaussian bones under pose θ, re-
fined by a delta skinning MLP. Each Gaussian bone has
three parameters for center, orientation, and scale respec-
tively. The orientations are determined by the parent joints,
and the centers as well as the scales are optimized. Then the
motion of a spatial point is driven by blending skinning,

X(θ) =

(
B∑

b=1

WbGb

)
X. (5)

Soft Deformation S. To account for the deformation caused
by non-skeletal movements (such as the clothes of human),
we add a neural deformation field [28, 45] S(·) that is ca-
pable of representing highly nonrigid deformations. We use
real-NVP [5] to produce 3D deformation fields that are in-
vertible by construction. The soft deformation is applied to
the canonical space similar to Human-NeRF [69],

X(ωd) = S(X, ωd), (6)

where ωd is a per-frame soft deformation code. Compared
to applying S to the articulated space, we found this formu-
lation to be easier to optimize since it operates on the fixed
canonical space.
Invertibility of Warping Fields. To summarize, both the
forward and backward warping fields {Wt,→,Wt,←} in-
clude an articulation operation in Eq. (3) and a deformation
operation in Eq. (6). Notably, we only need to define each
operation in the forward direction. The deformation oper-
ation is invertible by construction. To invert the articula-
tions, we invert the SE(3) transformations G in the blend
skinning equation, and compute the skinning weights with
Eq. (4) using the corresponding articulation codes. To en-
sure the articulation fields are self-consistent, we use a 3D
cycle loss following prior works [31, 79].

3.3. Physics-Informed Reconstruction

We define a differentiable physics simulation module to
constrain the scene and object representations.
Coordinate Transforms. To simulate physics, we define
a world coordinate system where gravity points in the -y
direction and the ground is located at the x-z plane. A point
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Figure 4: Reconstruction given monocular videos. We show
physically-plausible reconstructions of the articulated shapes
(green) and the surrounding environment (gray). Please see the
supplement website for video results.

from object space, denoted by X, can be transformed into
world space as:

Xw = Go→wX = Gb→wGb
−1GoX, (7)

where Go is the object root to camera transform and Gb is
the background to camera transform, both of which can be
estimated with differentiable rendering optimization [79].
Gb→w is the background to world transform, and we solve
it by fitting ground planes to the scene geometry (extracted
from density fields by marching cubes [34]) per video.
Scale Ambiguity. Notably, there is a scale ambiguity be-
tween each independently moving scene element [15, 84],
including the object and the background (Fig. 2). For
instance, one may reconstruct a normal-sized cat on the
ground, or a small cat floating in the air, such that both are
projected to the same video. To account for the scale ambi-
guity, we multiply a relative scale factor s to both the cam-
era translation and the background geometry, T∗b = sTc→b.

During the physics optimization, s is updated to en-
able the simulated ragdoll to follow the reconstructed kine-
matics under gravity and contact constraints. Specifically,
floating objects (which correspond to an overly large back-
ground scale) are penalized because they lead to a falling
motion that is inconsistent with the kinematic reconstruc-
tion. Similarly, ground penetrations (which correspond to
an overly small background scale) are also penalized be-
cause they lead to an inconsistent “bounce” from ground
reaction forces.
Differentiable Ragdoll Simulation. We construct an ar-



ticulated body dynamics model of a ragdoll using standard
Newtonian dynamics [32, 41]:

q̈ = M−1(Sτ + Jc(q)
T f − c(q, q̇)), (8)

where q = [Go→w,Q] ∈ R6+3B contains the generalized
coordinates of the ragdoll. Go→w is the root SE(3) transfor-
mation in Eq. (7) and Q ∈ R3B are joint angles produced
by Eq. (3). M is the generalized mass matrix, Jc is the
contact Jacobian computed by forward kinematics, f repre-
sents contact forces, c includes Coriolis force and gravity,
and τ ∈ R3B represents the joint torque actuation, which
is mapped to the generalized coordinates using a selection
matrix S [41]. Intuitively, Eq. (8) is the generalization of
Newton’s “F=MA” for rotating rigid bodies under contact.
We differentiably simulate ragdoll rigid body dynamics with
environmental contact using Warp [37, 75]. Warp performs
semi-implicit Euler integration to compute the updated sys-
tem state (q, q̇), which is differentaible. To ensure differ-
entiability through contact, Warp uses the frictional con-
tact model that approximates Coulomb friction with a linear
step function [11]. Additionally, it incorporates the contact
damping force formulation to provide better smoothness in
contact dynamics [74]. We refer readers to [75] for details.
Control. Rather than directly optimizing for time-varying
joint torque profiles τ t, we optimize for gain parameters
of a Proportional Derivative (PD) Controller [42], and the
time-varying target motion. Given target joint angles Qt,
currently simulated joint angles Qs, and their derivatives
at every frame, the PD controller computes joint torques to
reach the target:

τ t = Kp(Q
t −Qs) +Kd(Q̇

t − Q̇s), (9)

where Kp ∈ R3B and Kd ∈ R3B are PD gains. During
optimization (described in the next section), both the gains
(Kp,Kd) and the targets (Qt, Q̇t) are updated. Qt is ini-
tialized as the most recent kinematic reconstruction.

3.4. Optimization and Losses

Given monocular videos of an articulated target, we op-
timize the geometric parameters including the object and
scene radiance fields T, kinematic (or motion) parame-
ters D = {Go,Gb,A,S}, as well as physics parameters
ϕ = {s,M,K,Qt} as described above. The model is
learned by minimizing two types of losses: differentiable
rendering losses and differentiable physics losses.
Differentiable Rendering (DR) Losses. Similar to
BANMo [79], the DR losses leverage differentiable volume
rendering to update both the neural fields T and the kine-
matic parameters D. Reconstruction losses are similar to
those in existing differentiable rendering pipelines [40, 81],
where the goal is the minimize the difference between the
rendered images (including object silhouette, color, optical
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Figure 5: Differentiable physics simulation helps 3D tracking.
We draw trajectories for points on the left-rear foot of the cat over
time (yellow lines). Feet undergoing walking motion are difficult
to track using visual cues, due to similar textures and occlusion
by the other body parts. PPR uses dynamics priors via physics
simulation to bias the solution towards avoiding sudden changes
of velocity, and tracks the left-rear foot undergoing occlusion.

flow, pixel features) and the observed ones:

LDR(T,D) = Lsil + Lrgb + LOF + Lfeat + LReg. (10)

We refer readers to the supplementary material for regular-
ization terms, and BANMo [79] for the volume rendering
equations for each rendered image quantities. To disentan-
gle the object from the background, we use off-the-shelf es-
timates of object segmentation [23] as supervision to kick-
start the optimization. To account for errors in the off-the-
shelf segmentation, we set the weight of silhouette term to
0 after several iterations of optimization, while composite
rendering of foreground and background itself is capable of
disentangling the object and the non-object components by
matching the image evidence.
Differentiable Physics (DP) Losses. While image recon-
struction losses alone can achieve visually appealing results
from the reference viewpoint, the resulting poses can be
physically implausible (e.g., Fig. 2), particularly for the rel-
ative scale and the non-visible body parts. To address this
ambiguity, we use a differentiable physics simulator to reg-
ularize the solution. The physics term is defined as the dif-
ference between the observed kinematics q and a simulated
trajectory qs that is by construction physically-plausible:

LDP(D, ϕ) =

t0+T∑
t=t0

∥qt(D)− qs
t (ϕ)∥ such that

qs
t+1 = I

(
qs
t ,ϕ). (11)

Here, the observed kinematics q are a function of re-
constructed root coordinates in Eq. (7) and joint angles in
Eq. (3), while the simulated trajectory qs is a function of
physical parameters ϕ including scale, body mass and con-
trol. Notably, qs is constrained to be physically plausible
since it is the output of a physics simulator I, which is also
differentiable and therefore allows one to compute ∂I(·)

ϕ .
Coordinate Descent Optimization. In theory, the over-
all Loss(T,D,ϕ) = LDR(T,D) + LDP(D, ϕ) could be
directly optimized over all photometric, geometric, and
physical parameters [36]. However, differentiable render-
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Figure 6: Qualitative comparison on AMA-bouncing. We visualize the reconstructed meshes in the world coordinate, colored by their
timestamp (red: early; green: late). From the input viewpoint (left), the reconstruction of PPR looks comparable to the baselines. From
a novel viewpoint (as if viewing the scene from the right), PPR produces more physically plausible poses. HuMoR [54] reconstructs a
floating person with physically-implausible ground contact. BANMo with ground plane fitting (following NeuMan [20]) estimates a rough
scale of the person, but produces inaccurate foot contact (note the feet make contact with the ground only once over the video). PPR jointly
optimizes 3D pose and relative scale under dynamics and contact constraints, producing accurate foot contact and upright human poses.
Please find more visual comparisons in the supplement.

ing and physical simulation typically favor different sam-
pling strategies [51]. For instance, differentiable rendering
prefers sampling pixels uniformly from a dataset to encour-
age batch diversity, and differentiable physics simulation
prefers sampling sufficiently long time intervals to enforce
physics constraints. As a result, the difference in sampling
strategies poses challenge in joint optimization in terms of
implementation and sample efficiency. Instead, we optimize
the loss by repeating the following two steps of coordinate
descent:

1. minT,D Loss(T,D,ϕ) [Differentiable Rendering]

2. minϕ Loss(T,D,ϕ) [Differentiable Physics]

Step 1 corresponds to a standard differentiable render-
ing optimization where the kinematics D are regularized to
be similar to the most recent simulated trajectory qs(ϕ).
Step 2 corresponds to a differentiable physics optimization
that solves for physical parameters that closely targets (or
tracks) the most recent kinematic reconstruction D.
SGD. In practice, each coordinate step is implemented
via a fixed number of stochastic gradient descent (SGD)
steps, initialized from the values of the variables in the
previous descent cycle. Specifically, Step 1 constructs
a batch of Npx = 4096 random pixels for optimiza-
tion, performing NDR = 10 iterations of SGD. Because
the reconstructed kinematics will be heavily regularized to
lie close to the most recent physically-plausible trajectory
qs(ϕ), we found faster convergence by initializing D to
argminD LDP(D,ϕ), rather than its value from the previ-
ous DR cycle. Finally, for SGD optimization of Step 2, we
construct random batches of Nint = 30 random time inter-
vals of length T = 24 frames (2.4s for a 10Hz video), per-
forming NDP = 10 iterations of SGD per cycle. In practice,
we perform 50-100 cycles of coordinate descents.

Comparison to Prior Methods. PPR differs from prior
work [9, 10, 55, 60] in several ways. First, prior art can be
conceptualized as one cycle of coordinate descent, by pro-
ducing a single kinematic reconstruction (Step 1) to which
one fits a ragdoll simulation (Step 2). Second, the simulator

often solves for forces assuming known physical parameters
(such as generalized mass M and control parameters K),
while PPR optimizes over such parameters. We ablate such
design choices in our experiments. Intuitively, multiple de-
scent cycles allows for different kinematic reconstructions,
rather than a single (potentially inaccurate) point estimate of
geometry and kinematics. Finally, from a control perspec-
tive, one can view Step 2 as an instance of model-predictive
control (MPC) with stochastic batch sampling over small
time intervals [49].

4. Experiments

Dataset. We test PPR on the articulated-mesh-animation
(AMA) dataset, the casual-videos dataset from
BANMo, and a newly collected RGBD-pet dataset.
AMA contains videos of human performance with 3D mesh
ground-truth, and we use it to evaluate surface reconstruc-
tion accuracy. To test our method, we select 4 videos of
samba and 4 videos of bouncing. Although the videos
are calibrated multi-view captures, we treat them as monoc-
ular videos and do not use the time-synchronization or cam-
era extrinsic parameters.
Casual-videos includes monocular videos of the same
instance captured from different viewpoints, locations, and
times. It contains 11 videos of a cat, 11 videos of a dog,
and 10 videos of a human. We manually annotate per-frame
binary foot contact labels, and use them to evaluate contact
reconstruction accuracy.
RGBD-pet dataset contains videos of a cat and a dog, cap-
tured by an iPad with RGBD sensor. We use it to evaluate
scene reconstruction performance (please see supplement).
Implementation Details. Our differentiable rendering
pipeline is implemented with Pytorch. The object neu-
ral fields follow BANMo [79], and the background neural
fields follow VolSDF [80]. We modify neural blend skin-
ning of BANMo to represent skeletal deformation, and fol-
low CaDeX [28] to represent soft deformation as invertible
3D flow fields. We use Warp [37] for differentiable physics
simulation. It implements articulated body dynamics as



Figure 7: Visualization of ground reaction force. We show the
ground contact returned by the simulator. The body part in contact
with the ground is colored in red and the ground reaction forces are
marked with red arrows. Gravity is represented by a green arrow.
Note the contact modes are aligned with the image evidence.

Table 1: Surface reconstruction evaluation on AMA. 3D Cham-
fer distance (cm, ↓) and F-score (%, ↑) are averaged over all
the frames. The best results are in bold. We align the recon-
structed meshes with the ground-truth meshes by a per-sequence
scale factor and SE(3) transformation. PPR outperforms HuMoR
and BANMo in all metrics. Replacing BANMo’s control point
deformation with our skeleton deformation significantly improves
results on samba but made results worse on bouncing. Fur-
ther enforcing dynamics and contact constraints via differentiable
physics simulation (PPR-Ours) significantly improves results on
both sequences.

Method
samba bouncing

CD F@5cm F@2cm CD F@5cm F@2cm

HuMoR 10.5 65.3 31.7 14.8 49.0 18.9
BANMo 11.8 56.7 27.2 12.8 56.0 25.6
+skel 8.9 68.1 32.0 14.1 51.3 23.9

PPR-Ours 8.3 73.4 35.4 9.1 68.3 32.8

well as contact physics, and integrates kinematics over time
using the semi-implicit Euler scheme. The step size of the
simulator is set to 5e−4s. The simulation operations are au-
tomatically differentiated and parallelized at CUDA kernel
level. We write wrappers to pass gradients between Warp
and Pytorch.

Hyper-parameters. We use AdamW optimizer and opti-
mize the model for 36k iterations (taking around 18 hours
on 2 NVIDIA GeForce RTX 3090 GPUs). The weights of
loss terms are tuned to have similar initial magnitudes. We
first pre-train a background field [83], and jointly optimize
an object field with differentiable composite rendering [44].
The object root poses are initialized with a viewpoint net-
work following BANMo.

Extracting Registered Meshes. To evaluate surface recon-
struction accuracy, we extract the canonical mesh by finding
the zero-level set of SDF with running marching cubes on
a 2563 grid. To get the shape at a specific time instance,
the canonical mesh is forward warped with Wt,→, which
defines an articulation and deformation operation.

4.1. Surface Reconstruction

Metrics. To evaluate the reconstruction quality, we re-
port both Chamfer distance and F-scores. Chamfer dis-
tance computes the average distance between the ground-
truth and the estimated surface points by finding the nearest
neighbour matches, but it is sensitive to outliers. F-score at
distance thresholds d ∈ {5cm, 2cm} [64] provides a more
informative quantification of surface reconstruction error at
different granularity. To account for the scale ambiguity, we
fit a per-video scale factor by aligning the predicted mesh
with the ground-truth in the view space.
Baselines. We compare against HuMoR and BANMo for
human reconstruction. HuMoR [54] learns human motion
priors (in the world coordinate) from large-scale motion
capture datasets. Given an input video, it performs test-
time optimization leveraging OpenPose keypoint detections
and the learned humor motion priors. Processing a 170
frame video takes around 2 hours on a Titan-X machine.
BANMo [79] is a template-free method for video-based de-
formable shape reconstruction. It relies on differentiable
rendering optimization given optical flow correspondence
and DensePose features [43]. Running BANMo on around
1k frames takes 10 hours on two V100 GPUs.
Results. We show qualitative results in Fig. 6, and quantita-
tive results in Tab. 1. HuMoR produces accurate and consis-
tent reconstructions for videos with common motion (such
as the samba sequence). However, human motion prior fails
for certain athletic movements (such as the bouncing se-
quence) due to the lack of those motions in the human Mo-
Cap dataset. BANMo reconstructions look reasonable from
the reference viewpoint, but the invisible body parts often
appear distorted or tilted from a novel viewpoint due to the
fundamental depth ambiguity. In contrast, PPR’s differen-
tiable rendering module alone improves the reconstruction
(CD: 8.9% vs 11.8% for samba) by constraining the body
deformation with a skeleton. Our physics-informed opti-
mization further improves the reconstruction (CD: 8.3% vs
8.9% for samba) by inferring root pose and body motions
that satisfy contact and dynamics constraints in a differen-
tiable physics simulator.

4.2. Contact Estimation

Evaluation Protocol. To evaluate the physical plausibility
of the reconstructions, we follow DiffPhy [9] to design con-
tact metrics, including contact accuracy and foot skate. The
contact accuracy is defined as the F-score of contact state
estimation averaged over all frames. We further measure
the amount of foot skate as the average distance feet move
over adjacent contact frames, frames that are marked as in
contact with the ground according to the ground-truth. To
predict contact state, we mark a foot to be in contact with
the ground if its distance to the ground is smaller than 5%
of the body height.



Table 2: Foot contact estimation on casual-cat and AMA.
Foot contact F-score (%, ↑) and skating (cm, ↓) are averaged over
all frames. The best results are in bold. ∗To compare with BANMo
that only produces camera-space reconstructions, we take a step
further to reconstruct the background and use ground prior to find
the scale of camera motion following NeuMan [20], and decouple
it from BANMo results to produce world-space reconstructions.
By enforcing physics constraints, PPR-Ours outperforms the base-
lines in contact estimation. It produces more foot skate than Hu-
MoR, but less foot skate than BANMo.

Method
casual-cat samba bouncing

Contact Skate Contact Skate Contact Skate

HuMoR N.A. 44.6 0.4 54.8 2.6
BANMo∗ 68.6 2.8 24.5 1.6 1.3 8.3
PPR-Ours 93.1 2.1 67.4 1.2 85.4 7.4

Results. We show quantitative evaluation in Tab. 2. Our
method with physics-informed optimization achieves the
highest accuracy in contact estimation. BANMo with
ground fitting solves a rough relative scale between the
background and the object, and we found it to produce
worse results than PPR (Contact: 68.6 v 93.1 for casual-
cat). We posit that scale fitting suffers from inaccurate kine-
matic reconstructions, while PPR jointly improves both via
differentiable physics simulation. In terms of foot skate,
although PPR works better than BANMo, it still produces
more foot skate than HuMoR, especially for the highly-
dynamic bouncing sequence. Enforcing a stronger physics
prior for PPR (e.g., simulating longer time intervals) may
produce less foot skates. However, doing so makes the mo-
tion more challenging to track by a controller. Besides con-
tact estimation, PPR also produces plausible ground reac-
tion force estimation as shown in Fig. 7.

4.3. Ablation Study

We ablate design choices and show the results in Tab. 3.
Ground Prior vs Differentiable Physics. One commonly
used approach to determine the object scale is to force the
reconstructions to be above the ground plane except for a
supporting region touching the ground [20]. However, this
is sensitive to the accuracy of the visual reconstruction,
often resulting inaccurate ground contact with tilted body
poses, as illustrated in Fig. 2 (c). As a result, replacing
differentiable physics simulation with ground prior makes
contact estimation accuracy much worse (67.4% vs 26.3%).
One-cycle vs Coordinate Descent Optimization. Instead
of alternating between visual reconstruction and physics-
informed optimization, existing works [9, 10, 55, 60] only
complete one cycle by first estimating the shape and mo-
tion (using DR or feed-forward networks) and then optimiz-
ing physics (using DP or trajectory optimization). Com-
pared to using coordinate descent, the reconstruction er-
ror of one-cycle optimization significantly increases (8.3cm

Table 3: Ablation study on AMA-samba. Best results are in bold.
Please see Sec. 4.3 for a detailed discussion.

Method Contact (%, ↑) Skate (cm, ↓) CD (cm, ↓)

Full method 67.4 1.2 8.3
Phys→ground 26.3 1.3 8.9
One-cycle 62.3 1.1 46.0
PD→ open-loop 53.6 2.7 12.7
Freeze K/M 50.4 1.2 9.0

vs 46.0cm). In terms of contact metrics, the foot contact
accuracy dropped (62.3% vs 67.4%), although the skat-
ing metric becomes slightly better. This validates the ef-
fectiveness of joint vision-physics optimization via coor-
dinate descent: alternating between visual reconstruction
and physics-informed optimization improves reconstruction
quality while making the solution physically plausible.
Feedback vs Open-loop Control. We ablate the neces-
sity of using feedback control (specifically PD control in
Sec. 3.3) during differentiable simulation, as some existing
works [18, 19] directly optimize open-loop control without
position and velocity feedback. We find that open-loop con-
trol finds a hard time tracking the target kinematics obtained
from DR, and decreases both the contact accuracy and re-
construction quality. The gain of moving from open-loop to
feedback control indicates that incorporating prior knowl-
edge in controller design improves reconstruction results
and physical plausibility.
Optimizing Mass and PD Gains. We further investigate
the effect of optimizing the mass of each body part, as well
as the PD gains for each joint of the ragdoll. We found
freezing K and M decreases contact estimation accuracy
and reconstruction quality (even worse than without DP).
This suggests jointly inferring the internal parameters of the
ragdoll is important for physics-informed optimization.

5. Conclusion

We have presented a method for 3D-capturing dy-
namic objects and environments from monocular videos.
PPR combines differentiable rendering and differentiable
physics simulation, where the former builds a faithful 3D
model of the dynamic object and the rigid background
scene, and the latter fixes the physically-implausible con-
figurations, such as floating, unbalanced pose, foot staking,
and part swapping. PPR can generate physically plausible
trajectories, hence it has the potential to generate reference
motions for legged robots [47], and learn animals motion
priors [54] from internet video collections. The assump-
tion of the rigid body contact model limits PPR to terrestrial
creatures making contact with a flat ground plane. Extend-
ing it to contact scenarios in a complex environment and
between multiple agents will be interesting future work.



Reference Ground-truthDPT-omnidata BANMo* PPR

Figure 8: Comparison of scene reconstruction on RGBD-pet.
Pixels with ground-truth depth greater than 10 meters are not cap-
tured by the depth sensor, and therefore removed from evaluation
(marked as black).

A. Dynamic Scene Reconstruction
As mentioned in the submission, we collected a RGBD-

pet dataset containing videos of a cat and a dog, captured
by an iPad with RGBD sensor. We use the RGB stream for
reconstruction. To evaluate the dynamic scene reconstruc-
tion accuracy, although one would want to use the complete
scene geometry as ground-truth, it is difficult to obtain for
in-the-wild dynamic scenes. Instead, we render the depth
and evaluate against the depth from LiDAR sensors as a
proxy.
Depth Metrics. Following Eigen et al. [7], we compute the
root mean squared error (RMSE) for both rendered depth
and disparity (inverse depth) maps. To find the unknown
global scale factor, we align the median value of the ren-
dered depth with the ground truth similar to Luo et al. [35]:

si = median
x

{
Dpred

i (x)/Dground−truth
i (x)

}
. (12)

Table 4: Comparison of scene reconstruction on RGBD-pet. We
report root-mean-square-error (RMSE, ↓) on rendered depth and
disparity (inverse depth) maps, averaged over all frames. DPT-
omnidata [6, 53] trains transformer-based depth predictors on a
mix of multiple depth datasets. BANMo∗ [79] applies differen-
tiable rendering to reconstruct deformable objects, and we follow
NeuMan [20] to fit the object scale to a ground plane. PPR out-
performs DPT-omnidata on the cat sequence, and out-performs
BANMo∗ on both sequences.

Method
cat dog

depth disparity depth disparity

DPT-omnidata 0.620 0.201 0.165 0.027
BANMo∗ 0.181 0.149 0.232 0.061
PPR 0.179 0.139 0.216 0.041

Results. The results are shown in Tab. 4. We first inter-
pret the results of DPT-omnidata. Leveraging depth priors

Input Rag Doll and Rest Shape
Optimized Rag Doll and Rest Shape

Differentiable 
Rendering

Figure 9: Optimization of Rag Doll Model. We start with a gen-
eral rest shape (a unit sphere), and a known skeleton topology of
the rag doll model. During optimization, both the shape and the
rag doll model (joint locations and generalized mass of each link)
are specialized to fit the input videos.

learned from large-scale training data, DPT-omnidata per-
forms very well for the dog sequence. However, it fails
to produce accurate depth estimates for the cat sequence,
possibly due to the uncommon top-down view angle of
the video. PPR produces much better results on the cat
sequence because it relies on multivew constraints that is
more robust than depth priors. BANMo with ground fitting
computes a rough relative scale between the object and the
scene. As a result, the object still appears floating in many
frames, producing less accurate depth estimations. In con-
trast, PPR couples differentiable physics optimization with
differentiable rendering to jointly solve for the object scale
and its global movements, which successfully reduces er-
rors on the dynamic scene reconstruction task.

B. Additional Implementation Details
Regularization Terms. During differentiable rendering op-
timization, we apply shape and motion regularization terms
as follows. We use 3D cycle loss to encourage the for-
ward and backward warping fields W to be consistent with
each other [31, 79]. We additionally apply an eikonal
loss [14, 80] to both scene and object fields, which enforces
the reconstructed signed distances to represent a surface:

Leikonal = (∥∇XMLPSDF(X)∥ − 1)2, (13)

where we force the first order gradient of predicted SDF
to have unit norm. Eikonal regularization helps produce
well-defined mesh when running marching cubes on the
implicitly-defined surface.
Rag Doll Optimization. To optimize the object fields, we
start with a general rest shape (a unit sphere) and a known
skeleton topology of the rag doll model. During optimiza-
tion, both the shape and the rag doll model (joint locations
and generalized mass of each link) are specialized to fit the
input videos. Please see Fig. 9 for the visualization of rest
shapes and rag doll models.
Contact Plane Fitting. We assume the potential contact
bones of a skeleton (the “feet”) are known, and the contact
locations are visible. The algorithm is as follows:



Input: Scene points P ∈ RN×3, scene-to-camera transforms Gs→c ∈
RT×4×4 over T frames, camera intrinsics K ∈ R3×3, and ob-
ject “feet” trajectories in the camera space J ∈ RT×B×3.

‘Output: Contact plane parameters A = (n, d).
Parameters: Number of plane hypotheses K = 5, threshold T1 = 0.01.

Step 1: Fit Multiple Planes
For k in 1:K

Fit a plane Ak to P using RANSAC with threshold T1.
Set inlier points of Ak as Pk , and remove those from P.

Step 2: Find the Plane in Contact
Project scene points to images: p = KGs→cP ∈ RT×N×2.
Project “feet” points to images: q = KJc ∈ RT×B×2.
For k in 1:K

Score Ak by “feet”-to-Pk distance over frames and “feet”:
d=

∑T
t=1

∑B
j=1 min(||pk

t − qj
t ||).

Return Ak with the lowest total “feet”-to-Pk distance.

Under those assumptions, the contact plane does not have
to occupy the majority of the background, and cameras do
not have to point forward. Our algorithm works for the
videos we tested on (included in the supplementary page),
but breaks: (1) when the contact points are hard to define
(e.g., cat lying sideways), or (2) when the object makes con-
tact with multiple planes in a video.
Gradient Clipping. We find that differentiable physics in-
troduces unstable gradients to the optimization, causing a
high final reconstruction loss. Therefore, we clip outlier
gradients to an empirical value c = 0.1:

∇ϕLDP =

{
∇ϕLDP if ∥∇ϕLDP∥ ≤ c

c

∥∇ϕLDP∥∇ϕLDP if ∥∇ϕLDP∥ > c
(14)

where LDP is the differentiable physics loss in Eq. (11) and
ϕ is the physics parameters.

C. Additional Results
Comparison with animal body models. Creating accu-
rate body models for animals is difficult due to lack of
3D data containing diverse animal shape, appearance, and
pose. In the following, we show a visual comparison with
BARC [57], a state-of-the-art dog body model in Fig. 10.
The video comparison can be found on the supplement web-
site.

Figure 10: Comparison with BARC. BARC fails to reconstruct the
sharp ears of the dog, and puts the legs into the wrong positions,
while PPR faithfully reconstructs them.

Roll-out Performance. In Fig. 11, we show qualitative re-
sults of simulating the physical system (rag doll model) for

various time windows. Within the time window T in train-
ing, the simulation is almost always stable. When simulat-
ing a time window greater than T , the controller might fail
to track the motion.

We posit that it is because the error in the states of the rag
doll model accumulates over time [56]. The PD controller
is not able to generalize to never-before scenarios. One po-
tential direction to improve this is to ask the controller to
reason about future time horizons (instead of the direct next
step) [48].

t=1s t=10s t=13s

. . . . . .

Figure 11: Simulation over long time window. We perform
physics optimization with a window size of 2.4s. The controller
keeps track of the target for 10s, and diverged at around 13s. Red:
simulated character. Gray: reference character.
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