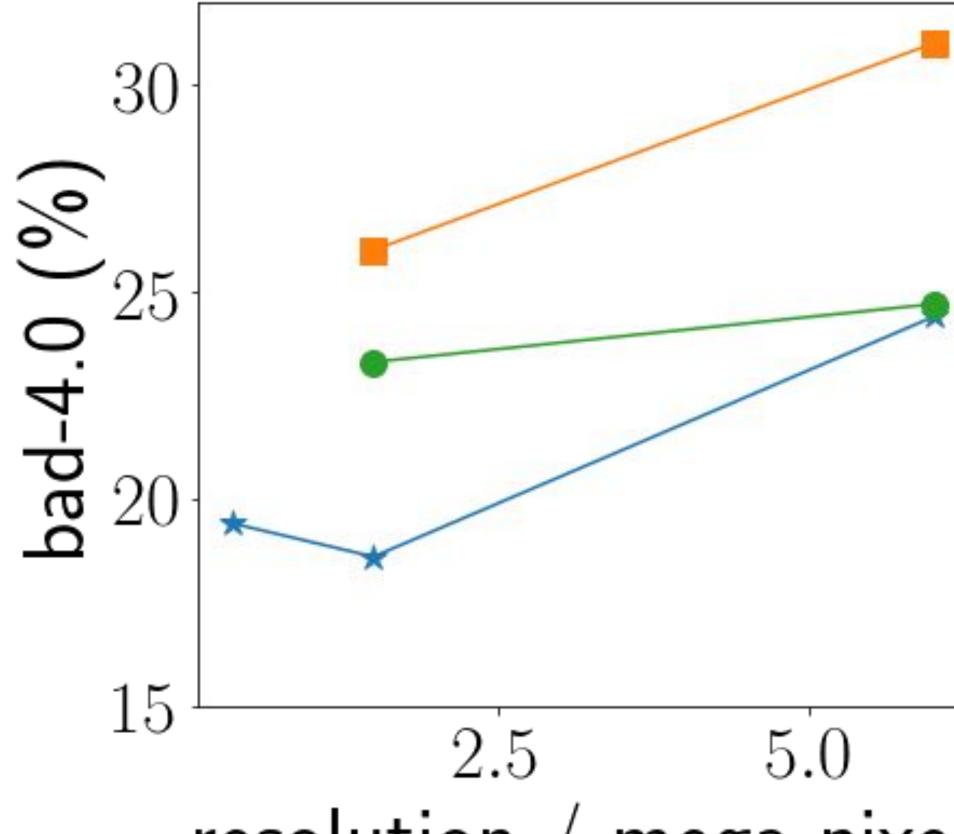


Introduction Motivation

"Progression of Pixel Resolution in Digital Cameras." Indranil's World, 18 Sept. 2014,

<u>ndranilsinharoy.com/2014/02/09/pixel-resolution-in-digital-camera</u>

LiDAR vs Stereo

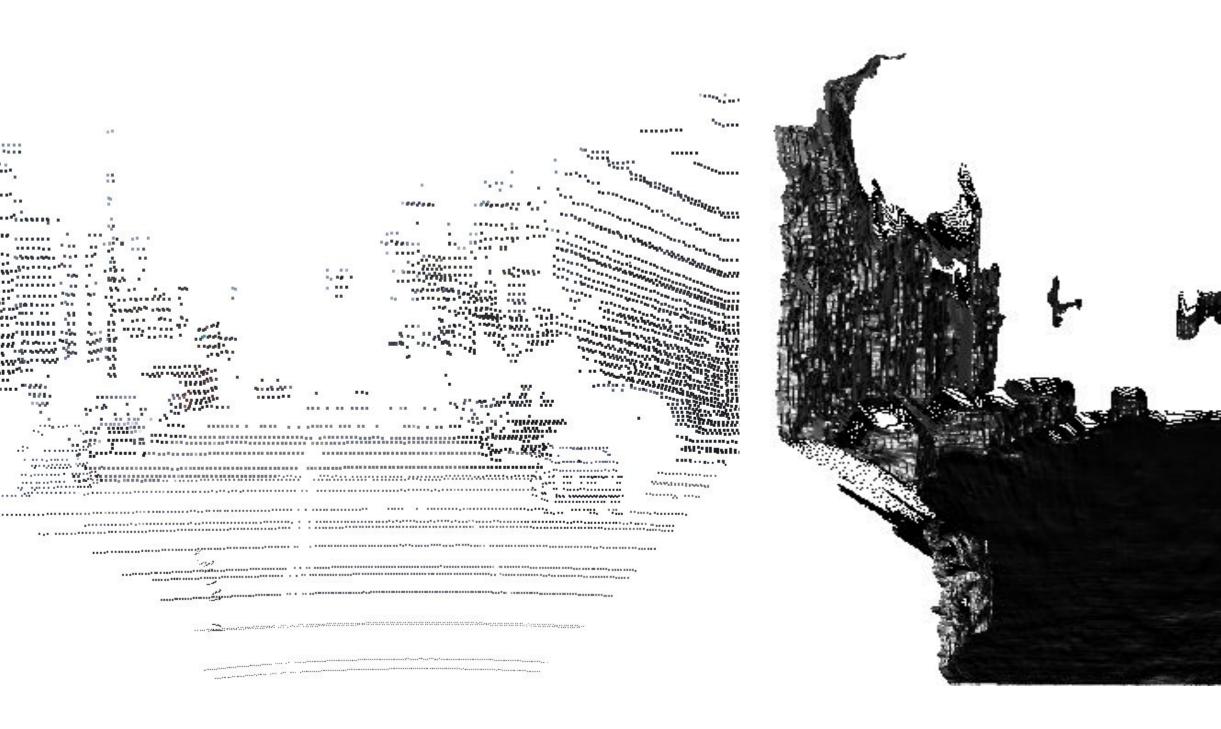


resolution / mega-pixel *On Middlebury benchmark.



Why high-res?

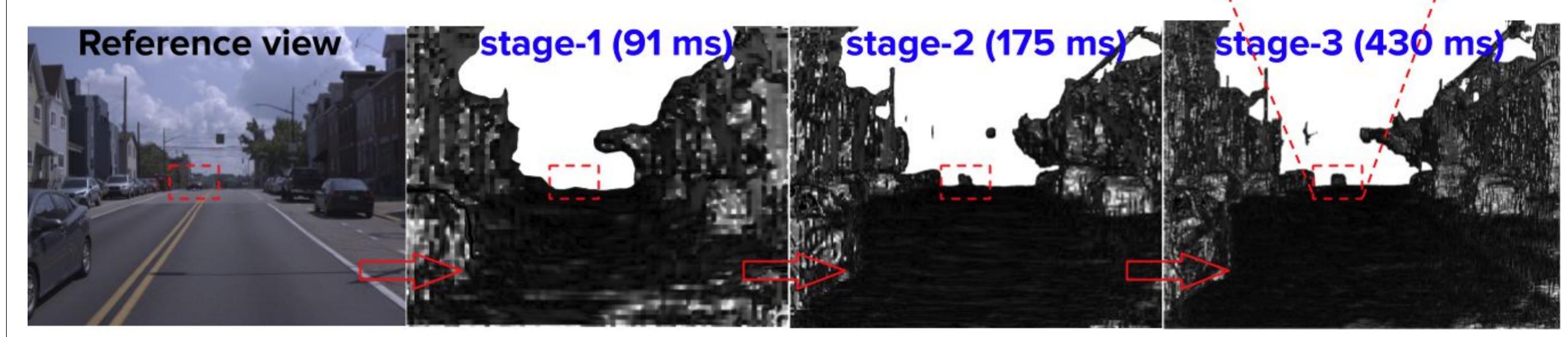
 $\epsilon_Z=rac{\epsilon_d}{bf}Z^2$



- ϵ_Z : depth error
- ϵ_d : disparity error
- *b* : baseline
- f : focal length

_ _ _ _ _ _ _ _ _ _ _ _

•SOTA on Middlebury while significantly faster than prior arts. •Anytime on-demand reports of disparity from coarse-to-fine.

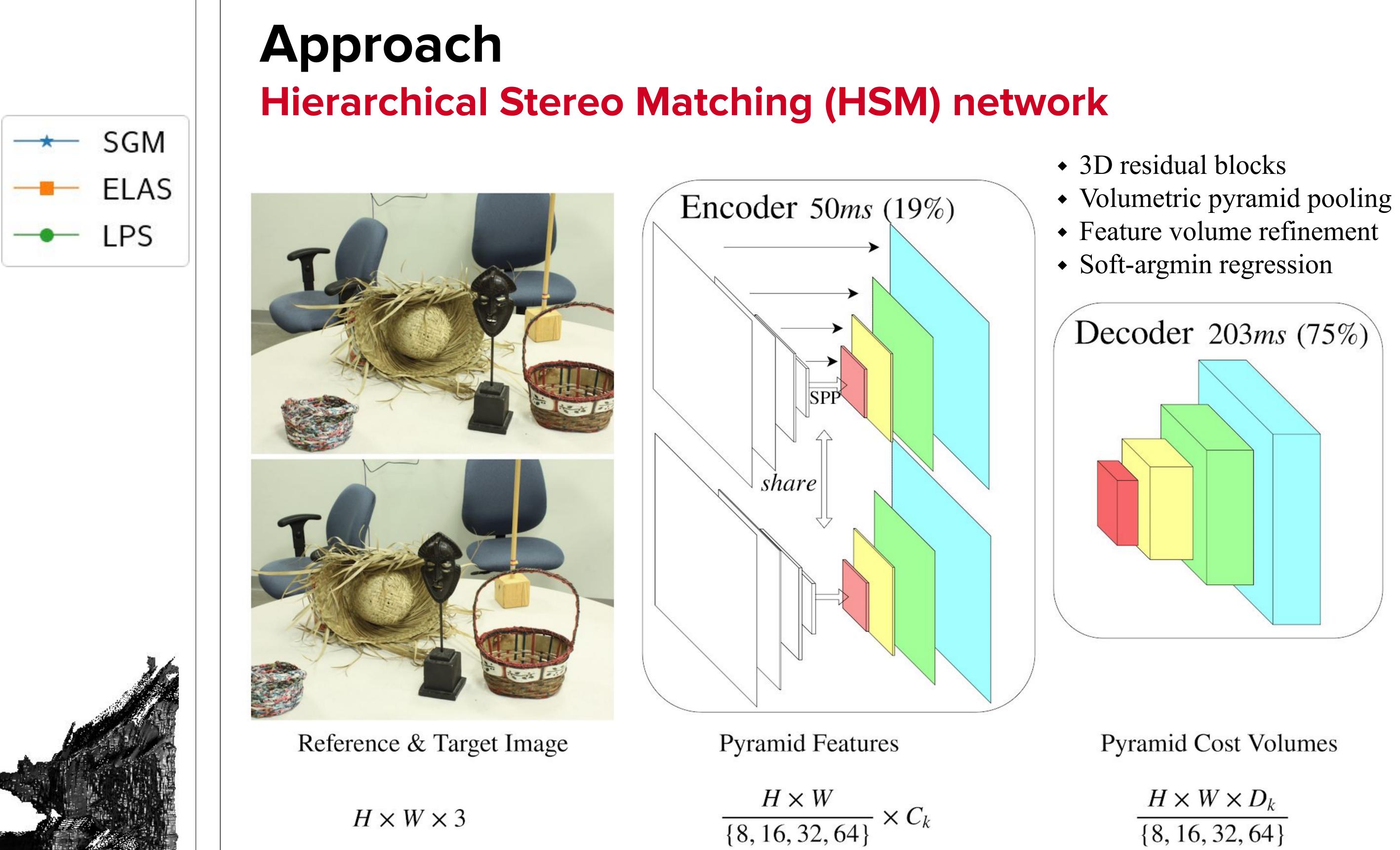


Challenges

 Memory and running time overhead Insufficient high-resolution training data •Vertical disparities

Hierarchical Deep Stereo Matching on High-resolution Images Gengshan Yang¹, Joshua Manela², Michael Happold², Deva Ramanan^{1,2}

Carnegie Mellon University¹, Argo Al²



High-resolution datasets

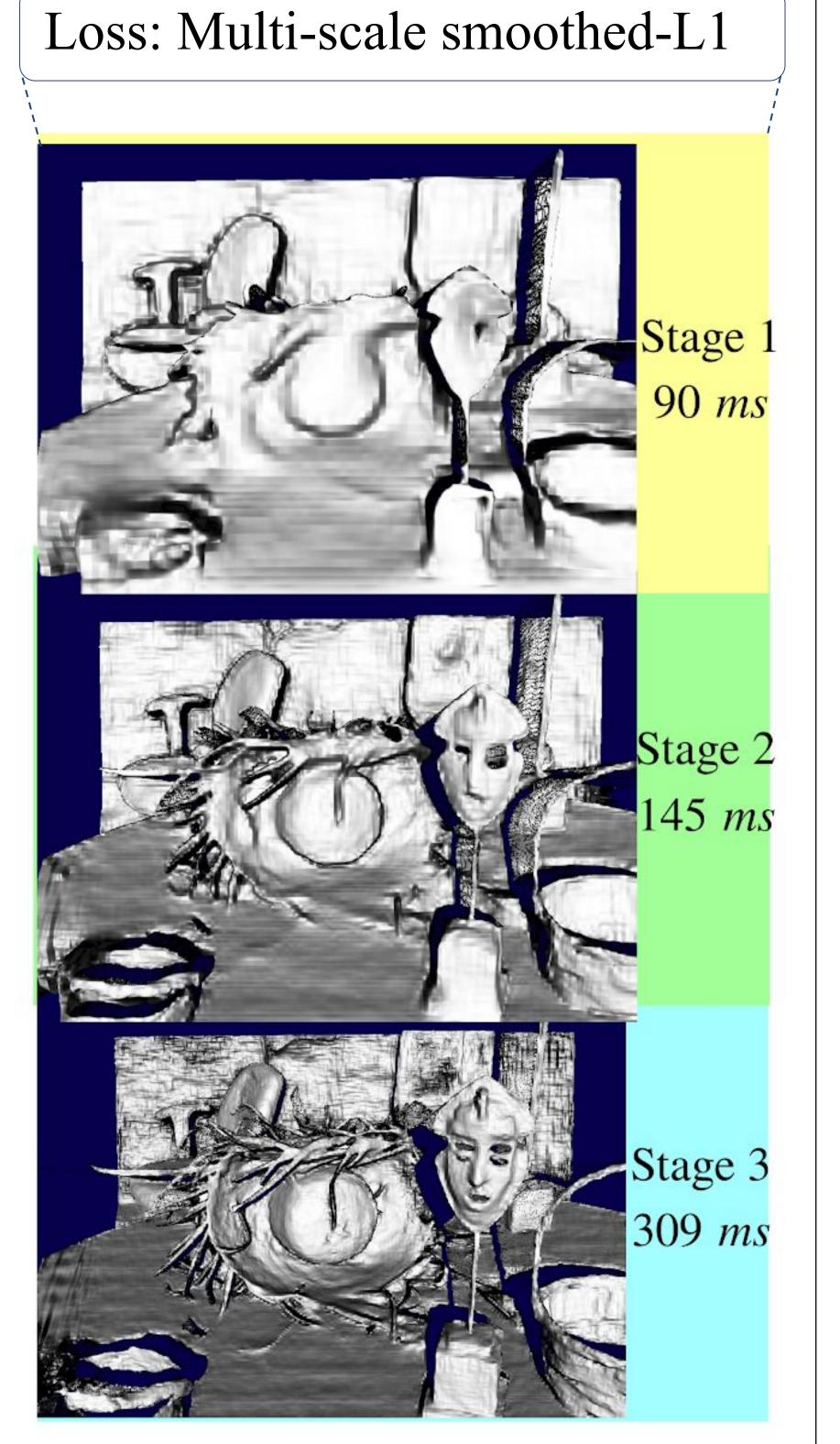
- ·For training, we collected High-res Virtual Stereo (HR-VS) dataset using Carla simulator. •For testing, we collected High-res Real Stereo
- (HR-RS) dataset while driving in the urban scenes.

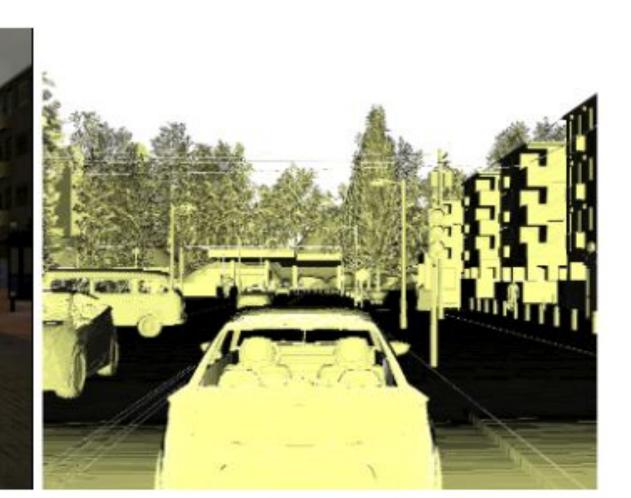
Name	Res*	Size	Scene	Real
Sintel	0.45	1064	In/Outdoor	N
ETH3D	0.46	27	Campus	Y
KITTI-15	0.47	200	Driving	Y
Sceneflow	0.52	30k	All	Ν
Middlebury	6.00	23	Indoor	Y
HR-VS (Ours)	5.07	780	Driving	Ν
HR-RS (Ours)	4.65	120	Driving	Y

*: in Megapixel

Stereo data augmentation

- y-disparity augmentation: randomly apply rotation and translation to the target image;
- Asymmetric color augmentation: randomly apply color transformations to the target image;
- Asymmetric occlusion: randomly occlude a region of the target image.





ground-truth

target image

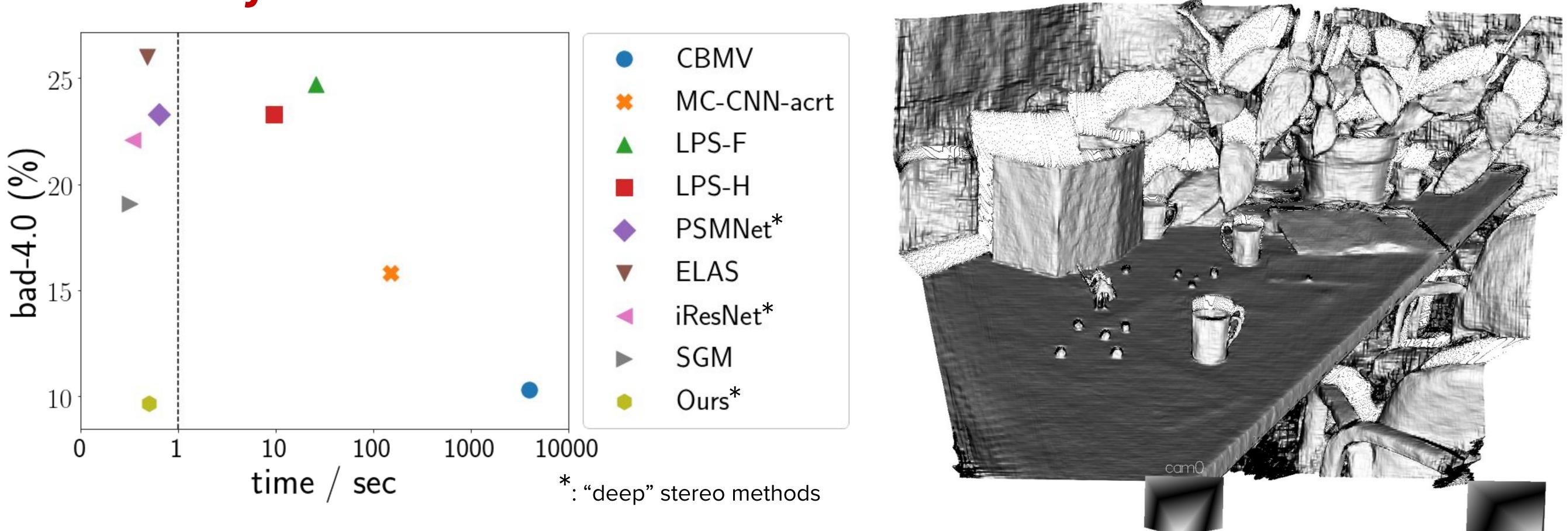
target image

stage 3 prediction

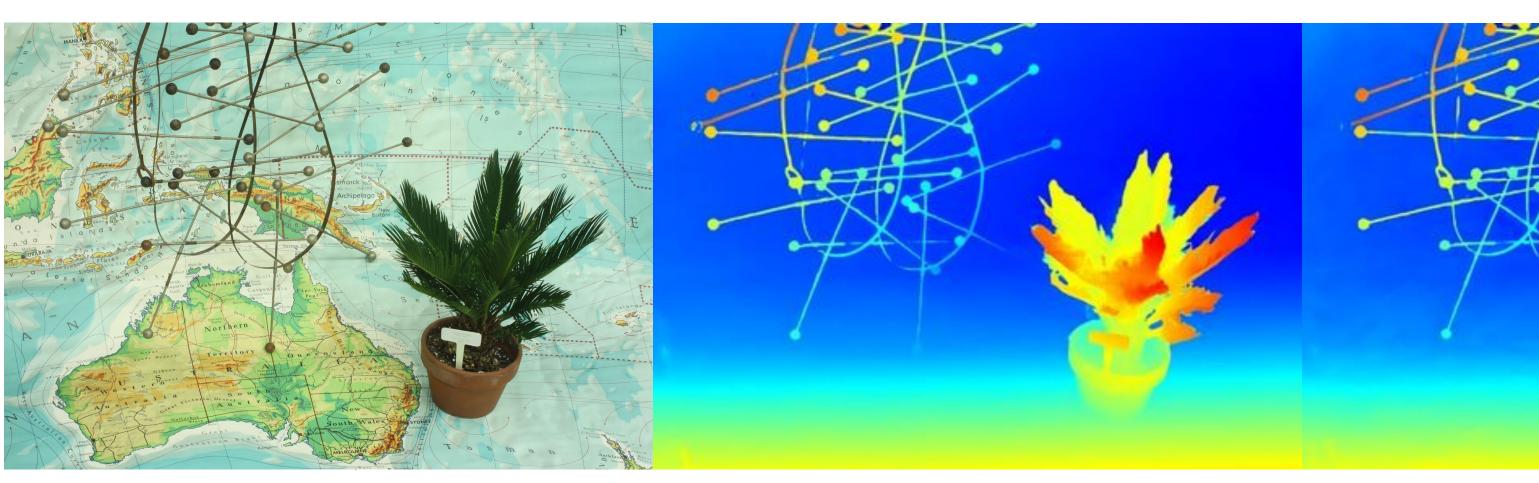
Experiments Setup

We jointly train on 4 publicly available datasets, including Middlebury-14, KITTI-15, ETH3D and SceneFlow, together with proposed HR-VS.

Middlebury

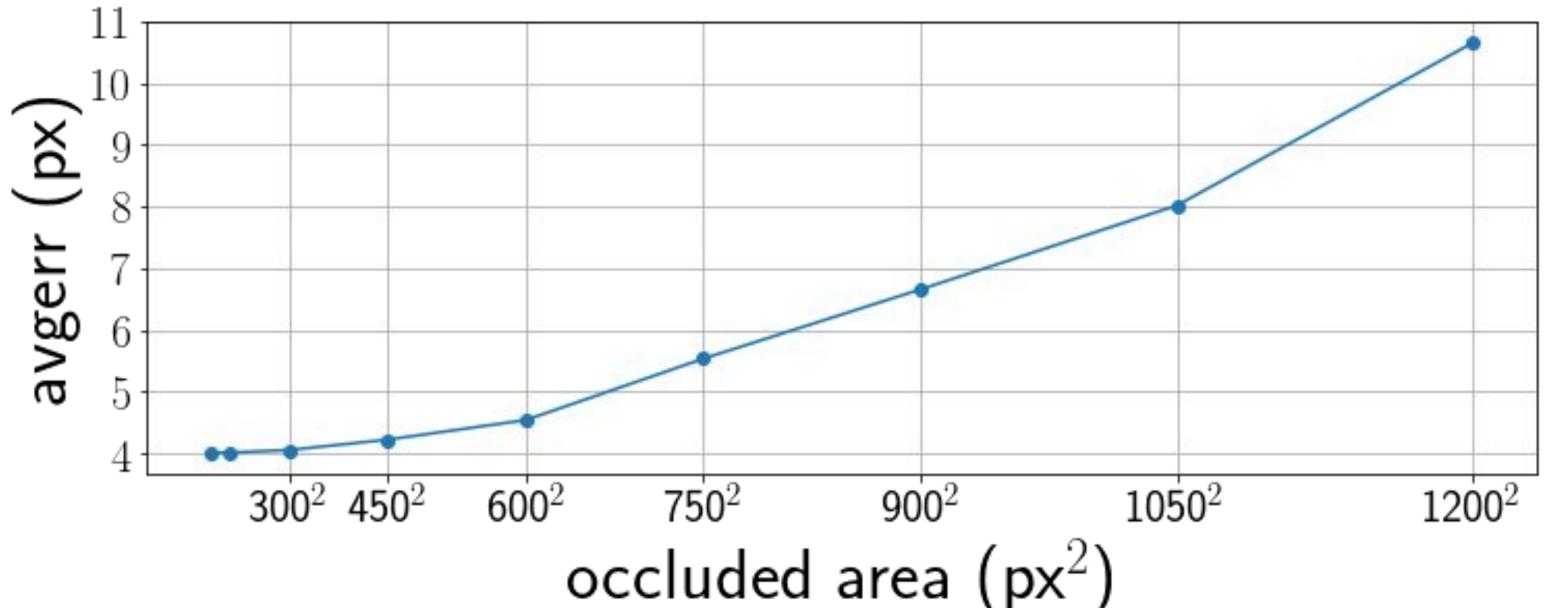


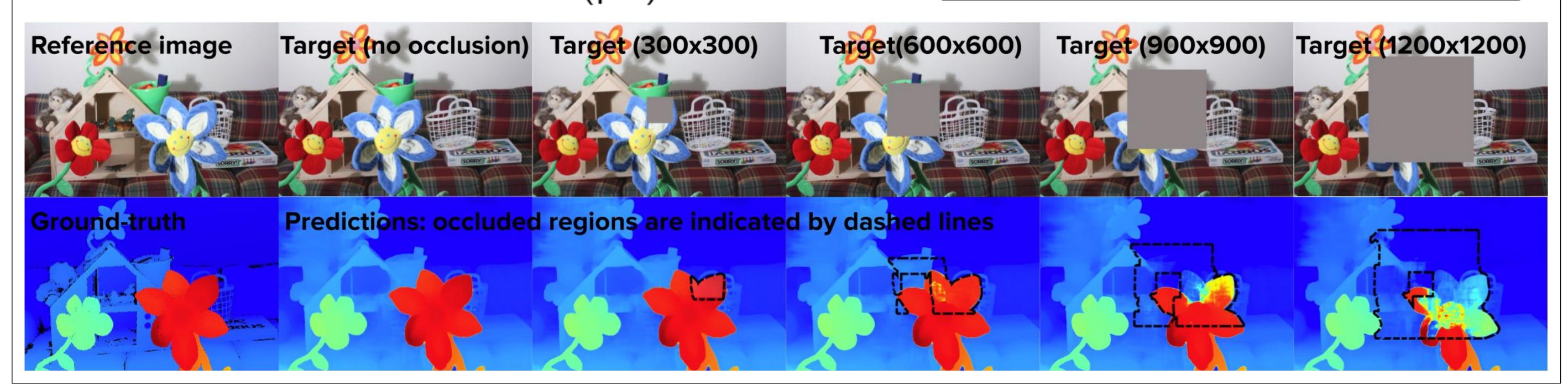
Resilience to rectification error



reference image

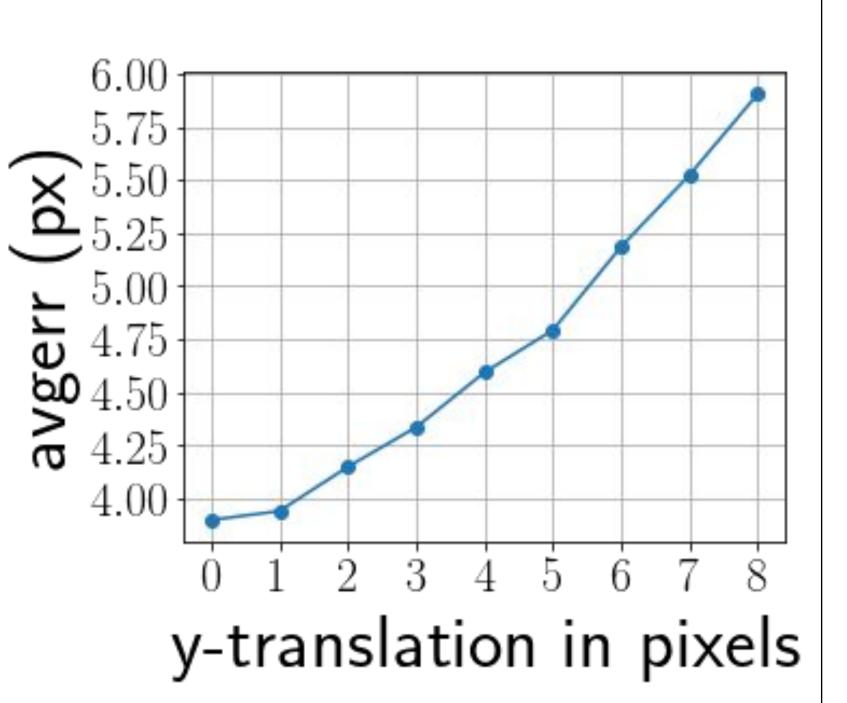
Resilience to occlusion





perfect rectification

imperfect rectification



Diagnostics

Method	bad-2.0 (%)
full-method	26.88
feature fusion \rightarrow cost fusion	31.03
w/o HR-VS	30.24
w/o y-disp. augmentation	28.98
w/o multi scale loss	28.83
w/o occlusion augmentation	28.20
w/o VPP	27.73