
Hierarchical Deep Stereo Matching on High-resolution Images

Experiments

High-resolution datasets
∙For training, we collected High-res Virtual Stereo 
(HR-VS) dataset using Carla simulator.
∙For testing, we collected High-res Real Stereo 
(HR-RS) dataset while driving in the urban scenes.

Setup
∙We jointly train on 4 publicly available datasets, including Middlebury-14, KITTI-15, ETH3D 
and SceneFlow, together with proposed HR-VS.
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Stereo data augmentation
• y-disparity augmentation: randomly apply rotation and translation to the target image; 
• Asymmetric color augmentation: randomly apply color transformations to the target image;
• Asymmetric occlusion: randomly occlude a region of the target image.

Resilience to rectification error

Data and Pytorch code available:
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*: “deep” stereo methods

*On Middlebury benchmark.

Approach
Hierarchical Stereo Matching (HSM) network

⬩ 3D residual blocks
⬩ Volumetric pyramid pooling
⬩ Feature volume refinement
⬩ Soft-argmin regression
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Resilience to occlusion
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“Progression of Pixel Resolution in Digital 
Cameras.” Indranil's World, 18 Sept. 2014, 
indranilsinharoy.com/2014/02/09/pixel-resolution-in-digital-cameras/.
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Why high-res?

Results
∙SOTA on Middlebury while significantly faster than prior arts.
∙Anytime on-demand reports of disparity from coarse-to-fine.

Challenges
∙Memory and running time overhead
∙Insufficient high-resolution training data
∙Vertical disparities
 

Loss: Multi-scale smoothed-L1


