



# Volumetric Correspondence Networks for Optical Flow

# Code available:

github.com/gengshan-y/VCN



# Gengshan Yang<sup>1</sup>, Deva Ramanan<sup>1,2</sup>

Carnegie Mellon University<sup>1</sup>, Argo AI<sup>2</sup>

## Introduction

### Optical flow / visual correspondences





Overlaid reference and target image

#### Related work: cost volume filtering



Reference image

Target image





Dense 2D displacement fields

#### Contributions

- ·Efficient higher-dimension (4D) cost volume processing
- Separable volumetric filters: reduce computation and parameters
- Multi-channel cost volumes: capture multiple dimensions of pixel similarity
- Adaptive cost volumes allow networks to generalize across tasks: train and test a single network for both flow+stereo
- · Results
- SOTA accuracy on optical flow benchmarks
- Training converges in up to 10X fewer iterations than prior art

# Approach

### Key idea: 4D filters

#### Prior method

- 1) reshape to  $C(d,x,y) \in R^{UV imes H imes W}$
- 2) multi-channel 2D convs with  $W \in R^{UV imes 3 imes 3}$



#### Ours

- 1) keep  $C(u,v,x,y) \in R^{U imes V imes H imes W}$
- 2) 4D convs with  $W \in R^{3 \times 3 \times 3 \times 3}$



 $C(u,v) = \sum_{i=1}^{3} \sum_{j=1}^{3} w_{(u,v) \leftarrow (i,j)} C(i,j)$ 

### Separable filters

### $K(\mathbf{u}, \mathbf{x}) * C(\mathbf{u}, \mathbf{x}) = K_{WTA}(\mathbf{u}) * \left| K_S(\mathbf{x}) * C(\mathbf{u}, \mathbf{x}) \right|$



### Multi-channel 4D cost volumes







# Experiments

#### Benchmarks

| Train                                                                                              | Method                            | K-15-train |         | K-15-test         |                                                     | S-train (epe) $\downarrow$ |        | S-test (epe) $\downarrow$ |                   | Param. | GFlops | Iter.           |
|----------------------------------------------------------------------------------------------------|-----------------------------------|------------|---------|-------------------|-----------------------------------------------------|----------------------------|--------|---------------------------|-------------------|--------|--------|-----------------|
| dataset                                                                                            |                                   | Fl-epe↓    | Fl-all↓ | Fl-all↓           | $\mathrm{D}1\text{-}\mathrm{all}^\dagger\downarrow$ | Clean                      | Final  | Clean                     | Final             |        | СТЮрь  | 1001.           |
| Pre-train: Chairs and Things                                                                       | FlowNet2                          | 10.08      | 30.0    | _                 | -                                                   | 2.02                       | 3.54   | 3.96                      | 6.02              | 162.5M | 368.3  | 7100K           |
|                                                                                                    | PWC-Net                           | 10.35      | 33.7    | -                 | 23.30                                               | 2.55                       | 3.93   | 10 <del>-10</del>         | -                 | 8.8M   | 101.6  | 1700K           |
|                                                                                                    | $\mathrm{HD}^{\wedge}\mathrm{3F}$ | 13.17      | 24.0    | <del></del>       | -                                                   | 3.84                       | 8.77   | · <del>-</del>            | 1 <del>17</del> 8 | 39.6M  | 174.8  | : <del></del> - |
|                                                                                                    | Ours-small                        | 9.43       | 33.4    | <del></del>       | 13.12                                               | 2.45                       | 3.63   | 10 <del>70</del>          | 1 <del>77</del> 4 | 5.6M   | 41.0   | 220K            |
|                                                                                                    | Ours-full                         | 8.36       | 25.1    | : <del>-</del> :% | 8.73                                                | 2.21                       | 3.62   | 227                       | 1 <del></del>     | 6.2M   | 101.7  | 220K            |
| $\begin{array}{c} \text{Fine-tune:} \\ \text{K(ITTI)} \\ \text{or} \\ \text{S(intel)} \end{array}$ | FlowNet2                          | (2.30)     | (8.6)   | 11.48             | -                                                   | (1.45)                     | (2.01) | 4.16                      | 5.74              | 162.5M | 368.3  | +500K           |
|                                                                                                    | PWC-Net+                          | (1.50)     | (5.3)   | 7.72              | 9.17                                                | (1.71)                     | (2.34) | 3.45                      | 4.60              | 8.8M   | 101.6  | +750K           |
|                                                                                                    | LiteFlowNet2                      | (1.47)     | (4.8)   | 7.74              | -                                                   | (1.30)                     | (1.62) | 3.45                      | 4.90              |        |        | : <del></del> - |
|                                                                                                    | IRR-PWC                           | (1.63)     | (5.3)   | $7.65_{3}$        | -                                                   | (1.92)                     | (2.51) | 3.84                      | 4.58              | 6.4M   |        | +750K           |
|                                                                                                    | $\mathrm{HD}^{\wedge}\mathrm{3F}$ | (1.31)     | (4.1)   | $6.55_{2}$        | -                                                   | (1.87)                     | (1.17) | 4.79                      | 4.67              | 39.6M  | 174.8  | -               |
|                                                                                                    | Ours-small                        | (1.41)     | (5.5)   | 7.74              | 6.10                                                | (1.84)                     | (2.44) | 3.26                      | 4.73              | 5.6M   | 41.0   | +140K           |
|                                                                                                    | Ours-full                         | (1.16)     | (4.1)   | $6.30_{1}$        | 4.67                                                | (1.66)                     | (2.24) | $2.81_{1}$                | $4.40_{1}$        | 6.2M   | 101.7  | +140K           |

\* Metrics: Fl-epe is the average end-point (L2) error of optical flow vectors; Fl-all and D1-all are percentage of flow/stereo predictions with error less than some threshold.

#### Generalize: 1D to 2D disparity





| PWC-Net-ft (fine-tuned on real stereo) | Ours-small-ft (fine-tuned on real stereo) |
|----------------------------------------|-------------------------------------------|
|                                        |                                           |

## Application: stereo matching with imperfect rectification

| Method  | avge    | inc.(%)   |      |
|---------|---------|-----------|------|
|         | perfect | imperfect |      |
| SGBM2   | 14.51   | 15.89     | 9.5  |
| ELAS    | 9.89    | 11.79     | 19.2 |
| PWC-Net | 9.41    | 9.92      | 5.4  |
| Ours    | 9.03    | 8.79      | -2.7 |



### Ablation

|          | Method       | EPE $(px) \downarrow$ | GFlops | # Params. |
|----------|--------------|-----------------------|--------|-----------|
| (2)      | DenseNet-2D  | 2.64                  | 25.5   | 8.2       |
|          | Ours-full-4D | 2.30                  | 52.5   | 1.83      |
|          | Ours-sep-4D  | 2.31                  | 23.4   | 1.78      |
|          | Ours-final   | 1.73                  | 28.5   | 2.94      |
| <u> </u> | Ours-K = 1   | 2.05                  | 27.8   | 2.94      |